• Title/Summary/Keyword: failure line

Search Result 839, Processing Time 0.023 seconds

A Preliminary Study on Shore Protection from Erosion around Seoguipo Coastal Waters (서귀포 연안해역의 침식대책 수립을 위한 기초연구)

  • Jeon, Min-Su;Lee, Joong-Woo;Lee, Hak-Seung;Hwang, Hwang;An, Do-Kyung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.11-19
    • /
    • 2005
  • Traditionally Jeju island has a mild oceanic climate throughout the year and famous as worldwide resort area bacause of its pure natural environment and dramatic coastal scenery. But unpredicted coastal erosion problem, caused by variation of environmental conditions from construction of coastal structure and renovation of the existing ports, has raised its head above the water, and is becoming serious these days just like other coastal area in Korea. The phenomena happen here along the seaside of southern part of the island show that severe changes in coastal line from erosion and even witnessed the coastal cliff failure. In advanced countries, coastal engineers and researchers have studied deeply about this kind of problem for a long time. However, as it is not sot active in Korea and lack of research data, there exists difficulties on building protection methods and thoughtless constructions might make it more complicated and fatal to the coastal environment. In this study, we investigated some case studies of other countries and intended to induce and propose some integral protection methods for coastline erosion, considering environmentally sound and water friendly way of developement such as artificial reef, floating breakwater, and double cellblock breakwater. Finally, we made analysis on the proposed methods with numerical model test and evaluation on the feasibility of each method.

  • PDF

A Conceptual Design of Maintenance Information System Interlace for Real-Time Diagnosis of Driverless EMU (무인전동차의 실시간 상태 진단을 위한 유지보수 정보시스템 인터페이스에 대한 개념설계)

  • Han, Jun-hee;Kim, Chul-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.63-68
    • /
    • 2017
  • Although automated metro subway systems have the advantage of operating a train without a train driver, it is difficult to detect an immediate fault condition and take countermeasures when an unusual situation occurs. Therefore, it is important to construct a maintenance information system (MIS) that detects the vehicle failure/status information in real time and maintains it efficiently in the depot of the railway's vehicles. This paper proposes a conceptual design method that realizes the interface between the train control system (TCS), the operation control center train control monitoring system (OCC-TCMS) console, and the MIS using wireless communication network in real-time. To transmit a large amount of information on 800,000 occurrences per day during operation, data was collected in a 56 byte data table using a data processing algorithm. This state information was classified into 4 hexadecimal codes and transmitted to the MIS by mapping the status and the fault information on the vehicle during the main line operation. Furthermore, the transmission and reception data were examined in real time between the TCS and MIS, and the implementation of the failure information screen was then displayed.

The Study on Design of Circuit Card Assembly on Servo Control Unit for Automated Resupply Vehicle K56 (K56 탄약운반장갑차용 서보제어기의 회로카드조립체 설계에 관한 연구)

  • Lee, Ju-Seung;Kim, Seong-Jin;Bae, Gong-Myeong;Kwon, Soon-Mo;Park, Hyean-Jo;Choi, Jun-Sok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.102-109
    • /
    • 2019
  • This paper describes the design of the circuit card assembly to eliminate the communication error on a servo control unit installed in the automated resupply vehicle K56. K56 is a weapon system that automates the supply and loading of ammunition on the K-55A1 self-propelled artillery. As the core item responsible for ammunition movement control, the servo control unit is required to have good communication stability and reliability, but the conventional unit has recognized a problem that communication error intermittently occurs, resulting in an emergency stop phenomenon. We analyzed the communication signal of the servo control unit and identified the failure cause of the circuit card assembly to solve this problem. In addition, the signal interference in data/address line of the circuit card assembly was confirmed through analysis of the failure cause, and redesigned to avoid the interference, such as adjustment of the distance between communication lines and position change. Finally, the proposed cause analysis and redesign were verified through the component of servo control unit and attachment test on K56. We expected these study results to be used as reference for the design of other similar items.

An Experimental Study on the Application of End-Expanded Soil Nailing Method (선단확장식 소일네일링 공법의 적용성에 관한 실험적 연구)

  • Lee, Sang-Eun;Jang, Yun-Ho;Moon, Chang-Yeul;Jeong, Gyo-Cheol;Park, Young-Sun
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.525-534
    • /
    • 2007
  • The peculiarity of end-expanded soil nailing method(EESNM) is in fixing the wedge-type steel body spreaded by collars and grouting its surroundings by cement milk within soils, after extending hole bottom over drilling hole diameter with top drill bit. The present study was done to establish the effect of this method. Laboratory model test were carried out to investigate the behavior characteristics with the performance of the pull-out test and failure experiment, after preparing soil test box having 1,300mm length, width 1,000mm, and height 1,100mm, and the same experimental condition was set up to compare with the general soil nailing method(GSNM). The pull-out force of about 23 percentage was increased, and the horizontal displacements 1.2 from 9.1 percentage in soil-nailed wall decreased in EESNM compare with GSNM. The axial force acting on nail increased considerably at load level over 7 ton in EESNM and 5 ton in GSNM. The predicted failure line from the maxima analyzed by axial tensile strain located at long distance from soil-nailed wall in EESNM. The EESNM demonstrated the superiority of reinforcement effect in comparison with GSNM from the results above mentioned.

Landslide Analysis of River Bank Affected by Water Level Fluctuation I (저수위 변동에 영향을 받는 강기슭의 산사태 해석 I)

  • Kim, You-Seong;Wang, Yu-Mei
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.3
    • /
    • pp.77-85
    • /
    • 2010
  • The change of water level in reservoirs is an important factor causing failure of bank slopes, i.e. landslide. The water level of Three Gorges reservoir in China fluctuate between 145 m and 175 m, as a matter of flood control. During its normal operational state, the rate of water level fluctuation is supposed to range from 0.67 m/d to 3.0 m/d. Majiagou slope is located on the left bank of Zhaxi River, 2.1 km up from the outlet. Zhaxi River is a tributary of the Yangtze River within the Three Gorges area, of which the water level changes with the reservoir. At the back of Majiagou slope, a 20 m long and 3~10 cm wide fissure developed just after the reservoir water level rose from 95 m to 135 m in 2003. This big fissure was a full suggestion of potential failure of this slope. In this study, unsaturated-saturated seepage analyses were carried out to simulate the change of pore-water pressures in the bank slope subjected to the reservoir water level change. The obtained pore-water pressures were then used to evaluate the change in factor of safety (FS) with reservoir water level. It was found that the phreatic line showed a delayed response with respect to the change of the reservoir water level, because the seepage through soil layer was generally slower than water flows itself. During the rising and drawdown process, the phreatic lines take the shapes of concave and convex, respectively. And the fluctuation of reservoir water level just affected the front part of the bank slope, but had little influence on the back of the slope.

  • PDF

A Study on the Behavior of Deformation in Soft Soils Subjected to Lateral Flow (측방유동을 받는 연약지반의 변형거동에 관한 연구)

  • 안종필;홍원표
    • Geotechnical Engineering
    • /
    • v.10 no.2
    • /
    • pp.25-40
    • /
    • 1994
  • In order to investigate behavior of lateral flow by plasticity of soils and construction control due to it, in the case of unsymmetrical surcharge load on the soft soils, we examine the existing theoretical background, and compared and analysed the experimental results by model test. After model test fabricated by model test apparatus, which made full remolding samples of soft soils, we observed the state of behavior for deformation with increasing load step to constant time interval. The critical surcharge and ultimate capacity showed tendency to approach to the proposed value of Jaky and Meyerhof, and the lateral flow pressure of which the maximum value was acted on the depth calculated by z/H=0.26+1.71cu and one third value of the maximum lateral flow pressure acted on the ground surface, approach the trapezoid distribution And maximum lateral flow pressure will be calculated by proposed equation of Hong or simple equation which($\alpha=0.4$) the flow pressure coefficient . of proposed equation by Tschebotarioff exchanged to($\alpha=K_0$) . Basides, the failure surcharge by [(q/$y_m$)-q] and [$S_y-(y_m/S_y)$] showed the smaller than ultimate bearing capacity, especially failure criteria line of control diagram of [$S_y(y_m/S_y)$] will be calculated by following equation. $S_y.=3.15exp[-0.58(y_m/S_y)$

  • PDF

Effects of occlusal load on the cervical stress distribution: A three-dimensional finite element study (교합하중이 치경부 응력분포에 미치는 영향에 관한 3차원 유한요소법적 연구)

  • Lee, Hyeong-Mo;Hur, Bock;Kim, Hyeon-Cheol;Woo, Sung-Gwan;Kim, Kwang-Hoon;Son, Kwon;Park, Jeong-Kil
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.6
    • /
    • pp.427-436
    • /
    • 2006
  • The objective of this study was to investigate the effects of various occlusal loads on the stress distribution of the buccal cervical region of a normal maxillary second premolar, using a three dimensional fnite element analysis (3D FEA). After 3D FE modeling of maxillary second premolar, a static load of 500N of three load cases was applied. Stress analysis was performed using ANSYS (Swanson Analysis Systems, Inc., Houston, USA). The maximum principal stresses and minimum principal stresses were sampled at thirteen nodal points in the buccal cervical enamel for each four horizontal planes, 1.0 mm above CEJ, 0.5 mm above CEJ, CEJ, 0.5 mm under CEJ. The results were as follows 1. The peak stress was seen at the cervical enamel surface of the mesiobuccal line angle area, asymmetrically. 2. The values of compressive stresses were within the range of the failure stress of enamel. But the values of tensile stresses exceeded the range of the failure stress of enamel. 3. The tensile stresses from the perpendicular load at the buccal incline of palatal cusp may be shown to be the primary etiological factors of the NCCLs.

Physical and mechanical properties of volcanic glass in the Samho area, South Korea (삼호지역에 분포하는 유리질화산암에 대한 물리적$\cdot$역학적 특성)

  • Kang Seong-Seung;Lee Heon-Jong;Kang Choo-Won;Kim Cheong-Bin
    • Tunnel and Underground Space
    • /
    • v.15 no.3 s.56
    • /
    • pp.223-227
    • /
    • 2005
  • The physical and mechanical properties of volcanic glass, which is distributed in the Samho area, South Korea were studied. Laboratory rock tests were carried out in order to obtain the various properties of rocks. Specific gravity, water content, absorption, porosity and wave velocity were measured for the physical properties. Uniaxial and triaxial compressive tests, Brazilian test and point load test were also performed for the mechanical properties. The tests of volcanic glass revealed that the apparent specific gravity, water content and absorption were 2.28, $1.67\%$ and $1.72\%$, respectively. Porosity $(3.87\%)$ was lower, whereas P-wave velocity (5330m/s) and S-wave velocity (2980 m/s) were relatively higher. Brazilian tensile strength ot 7.2MPa, and point load strength of 2.6MPa were among the mechanical properties of the rock. Uniaxial compressive strength (62.4MPa) estimated ken point load strength was very closed to the value (66.0MPa) from the uniaxial compressive test. Young's modulus and Poisson's ratio were E=43.2 GPa and v=0.28, respectively. Drawing the tangent line to Mohr-Coulomb failure criterion showed the cohesion of 20.1MPa and internal fraction angle of $28.6^{\circ}$.

Reliability evaluation of steel truss bridge due to traffic load based on bridge weigh-in-motion measurement

  • Widi Nugraha;Indra Djati Sidi;Made Suarjana;Ediansjah Zulkifli
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.4
    • /
    • pp.323-336
    • /
    • 2022
  • Steel truss bridge is one of the most widely used bridge types in Indonesia. Out of all Indonesia's national roads, the number of steel truss bridges reaches 12% of the total 17,160 bridges. The application of steel truss bridges is relatively high considering this type of bridge provides advantages in the standardization of design and fabrication of structural elements for typical bridge spans, as well as ease of mobilization. Directorate of Road and Bridge Engineering, Ministry of Works and Housing, has issued a standard design for steel truss bridges commonly used in Indonesia, which is designed against the design load in SNI 1725-2016 Bridge Loading Standards. Along with the development of actual traffic load measurement technology using Bridge Weigh-in-Motion (B-WIM), traffic loading data can be utilized to evaluate the reliability of standard bridges, such as standard steel truss bridges which are commonly used in Indonesia. The result of the B-WIM measurement on the Central Java Pantura National Road, Batang - Kendal undertaken in 2018, which supports the heaviest load and traffic conditions on the national road, is used in this study. In this study, simulation of a sequences of traffic was carried out based on B-WIM data as a moving load on the Australian type Steel Truss Bridge (i.e., Rangka Baja Australia -RBA) structure model with 60 m class A span. The reliability evaluation was then carried out by calculating the reliability index or the probability of structural failure. Based on the analysis conducted in this study, it was found that the reliability index of the 60 m class Aspan for RBA bridge is 3.04 or the probability of structural failure is 1.18 × 10-3, which describes the level of reliability of the RBA bridge structure due to the loads from B-WIM measurement in Indonesia. For this RBA Bridge 60 m span class A, it was found that the calibrated nominal live load that met the target reliability is increased by 13% than stated in the code, so the uniform distributed load will be 7.60 kN/m2 and the axle line equivalent load will be 55.15 kN/m.

Mechanical Properties of a Lining System under Cyclic Loading Conditions in Underground Lined Rock Cavern for Compressed Air Energy Storage (복공식 지하 압축공기에너지 저장공동의 내압구조에 대한 반복하중의 역학적 영향평가)

  • Cheon, Dae-Sung;Park, Chan;Jung, Yong-Bok;Park, Chul-Whan;Song, Won-Kyong
    • Tunnel and Underground Space
    • /
    • v.22 no.2
    • /
    • pp.77-85
    • /
    • 2012
  • In a material, micro-cracks can be progressively occurred, propagated and finally lead to failure when it is subjected to cyclic or periodic loading less than its ultimate strength. This phenomenon, fatigue, is usually considered in a metal, alloy and structures under repeated loading conditions. In underground structures, a static creep behavior rather than a dynamic fatigue behavior is mostly considered. However, when compressed air is stored in a rock cavern, an inner pressure is periodically changed due to repeated in- and-out process of compressed air. Therefore mechanical properties of surrounding rock mass and an inner lining system under cyclic loading/unloading conditions should be investigated. In this study, considering an underground lined rock cavern for compressed air energy storage (CAES), the mechanical properties of a lining system, that is, concrete lining and plug under periodic loading/unloading conditions were characterized through cyclic bending tests and shear tests. From these tests, the stability of the plug was evaluated and the S-N line of the concrete lining was obtained.