• Title/Summary/Keyword: failure line

Search Result 839, Processing Time 0.032 seconds

Estimation of Safety Zone of Tunnel due to Adjacent Structure (근접구조물에 의한 터널의 안전영역 평가)

  • Hwang, Taikjean
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.3052-3060
    • /
    • 2013
  • When planning to construct adjacent structure by the side tunnel, the criteria of safety zone of tunnel have been proposed. There are no specific theoretical basis regarding load conditions and the distance of structure and the geological strata and the conditions of adjacent structure's location, and the conditions applied load. Two and three dimensional numerical analysis preformed to prove the deformation of the ground and structures caused by the tunnel excavation and evaluated the correlation and the suitability of the tunnel's safety zone regarding the location of adjacent structures and the changes in the modulus of deformation. This paper proposed the safety zone's range is getting bigger as the modulus of deformation is higher. Also, it seems that the possible range of construction under constraints in the diagram of revalued safety zone significantly expands as shear failure line appears on the invert extension line below the spring line.

Cause Analysis of Flow Accelerated Corrosion and Erosion-Corrosion Cases in Korea Nuclear Power Plants

  • Lee, Y.S.;Lee, S.H.;Hwang, K.M.
    • Corrosion Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.182-188
    • /
    • 2016
  • Significant piping wall thinning caused by Flow-Accelerated Corrosion (FAC) and Erosion-Corrosion (EC) continues to occur, even after the Mihama Power Station unit 3 secondary pipe rupture in 2004, in which workers were seriously injured or died. Nuclear power plants in many countries have experienced FAC and EC-related cases in steam cycle piping systems. Korea has also experienced piping wall thinning cases including thinning in the downstream straight pipe of a check valve in a feedwater pump line, the downstream elbow of a control valve in a feedwater flow control line, and failure of the straight pipe downstream of an orifice in an auxiliary steam return line. Cause analyses were performed by reviewing thickness data using Ultrasonic Techniques (UT) and, Scanning Electron Microscope (SEM) images for the failed pipe, and numerical simulation results for FAC and EC cases in Korea Nuclear Power Plants. It was concluded that the main cause of wall thinning for the downstream pipe of a check valve is FAC caused by water vortex flow due to the internal flow shape of a check valve, the main cause of wall thinning for the downstream elbow of a control valve is FAC caused by a thickness difference with the upstream pipe, and the main cause of wall thinning for the downstream pipe of an orifice is FAC and EC caused by liquid droplets and vortex flow. In order to investigate more cases, additional analyses were performed with the review of a lot of thickness data for inspected pipes. The results showed that pipe wall thinning was also affected by the operating condition of upstream equipment. Management of FAC and EC based on these cases will focus on the downstream piping of abnormal or unusual operated equipment.

Clinical Outcomes and Complications after Pedicle Subtraction Osteotomy for Fixed Sagittal Imbalance Patients : A Long-Term Follow-Up Data

  • Hyun, Seung-Jae;Rhim, Seung-Chul
    • Journal of Korean Neurosurgical Society
    • /
    • v.47 no.2
    • /
    • pp.95-101
    • /
    • 2010
  • Objective : Clinical, radiographic, and outcomes assessments, focusing on complications, were performed in patients who underwent pedicle subtraction osteotomy (PSO) to assess correction effectiveness, fusion stability, procedural safety, neurological outcomes, complication rates, and overall patient outcomes. Methods : We analyzed data obtained from 13 consecutive PSO-treated patients presenting with fixed sagittal imbalances from 1999 to 2006. A single spine surgeon performed all operations. The median follow-up period was 73 months (range 41-114 months). Events during peri operative course and complications were closely monitored and carefully reviewed. Radiographs were obtained and measurements were done before surgery, immediately after surgery, and at the most recent follow-up examinations. Clinical outcomes were assessed using the Oswestry Disability Index and subjective satisfaction evaluation. Results : Following surgery, lumbar lordosis increased from $-14.1^{\circ}{\pm}20.5^{\circ}$ to $-46.3^{\circ}{\pm}12.8^{\circ}$ (p<0.0001). and the C7 plumb line improved from $115{\pm}43\;mm$ to $32{\pm}38\;mm$ (p<0.0001). There were 16 surgery-related complications in 8 patients; 3 intraoperative, 3 perioperative, and 10 late-onset postoperative. The prevalence of proximal junctional kyphosis (PJK) was 23% (3 of 13 patients). However, clinical outcomes were not adversely affected by PJK. Intraoperative blood loss averaged 2,984 mL. The C7 plumb line values and postoperative complications were closely correlated with clinical results. Conclusion : Intraoperative or postoperative complications are relatively common following PSO. Most late-onset complications in PSO patients were related to PJK and instrumentation failure. Correcting the C7 plumb line value with minimal operative complications seemed to lead to better clinical results.

Vulnerability Analysis of Network Communication Device by Intentional Electromagnetic Interference Radiation (IEMI 복사에 의한 네트워크 통신 장비의 취약성 분석)

  • Seo, Chang-Su;Huh, Chang-Su;Lee, Sung-Woo;Jin, In-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.1
    • /
    • pp.44-49
    • /
    • 2018
  • This study analyzed the Vulnerability of Network Communication devices when IEMI is coupled with the Network System. An Ultra Wide Band Generator (180 kV, 700 MHz) was used as the IEMI source. The EUTs are the Switch Hub and Workstation, which are used to configure the network system. The network system was monitored through the LAN system configuration, to confirm a malfunction of the network device. The results of the experiment indicate that a malfunction of the network occurs as the electric field increases. The data loss rate increases proportionally with increasing radiating time. In the case of the Switch Hub, the threshold electric field value was 10 kV/m for all conditions used in this experiment. The threshold point causing malfunction was influenced only by the electric field value. The correlation between the threshold point and pulse repetition rate was not found. However, in case of the Workstation, it was found that as the pulse repetition rate increases, the equipment responds weakly and the threshold value decreases. To verify the electrical coupling of the EUT by IEMI, current sensors were used to measure the PCB line inside the EUT and network line coupling current. As a result of the measurement, it can be inferred that when the coupling current due to IEMI exceeds the threshold value, it flows through the internal equipment line, causing a malfunction and subsequent failure. The results of this study can be applied to basic data for equipment protection, and effect analysis of intentional electromagnetic interference.

An intelligent hybrid methodology of on-line system-level fault diagnosis for nuclear power plant

  • Peng, Min-jun;Wang, Hang;Chen, Shan-shan;Xia, Geng-lei;Liu, Yong-kuo;Yang, Xu;Ayodeji, Abiodun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.396-410
    • /
    • 2018
  • To assist operators to properly assess the current situation of the plant, accurate fault diagnosis methodology should be available and used. A reliable fault diagnosis method is beneficial for the safety of nuclear power plants. The major idea proposed in this work is integrating the merits of different fault diagnosis methodologies to offset their obvious disadvantages and enhance the accuracy and credibility of on-line fault diagnosis. This methodology uses the principle component analysis-based model and multi-flow model to diagnose fault type. To ensure the accuracy of results from the multi-flow model, a mechanical simulation model is implemented to do the quantitative calculation. More significantly, mechanism simulation is implemented to provide training data with fault signatures. Furthermore, one of the distance formulas in similarity measurement-Mahalanobis distance-is applied for on-line failure degree evaluation. The performance of this methodology was evaluated by applying it to the reactor coolant system of a pressurized water reactor. The results of simulation analysis show the effectiveness and accuracy of this methodology, leading to better confidence of it being integrated as a part of the computerized operator support system to assist operators in decision-making.

Behaviour and design of guyed pre-stressed concrete poles under downbursts

  • Ibrahim, Ahmed M.;El Damatty, Ashraf A.
    • Wind and Structures
    • /
    • v.29 no.5
    • /
    • pp.339-359
    • /
    • 2019
  • Pre-stressed concrete poles are among the supporting systems used to support transmission lines. It is essential to protect transmission line systems from harsh environmental attacks such as downburst wind events. Typically, these poles are designed to resist synoptic wind loading as current codes do not address high wind events in the form of downbursts. In the current study, the behavior of guyed pre-stressed concrete Transmission lines is studied under downburst loads. To the best of the authors' knowledge, this study is the first investigation to assess the behaviour of guyed pre-stressed concrete poles under downburst events. Due to the localized nature of those events, identifying the critical locations and parameters leading to peak forces on the poles is a challenging task. To overcome this challenge, an in-house built numerical model is developed incorporating the following: (1) a three-dimensional downburst wind field previously developed and validated using computational fluid dynamics simulations; (2) a computationally efficient analytical technique previously developed and validated to predict the non-linear behaviour of the conductors including the effects of the pretension force, sagging, insulator's stiffness and the non-uniform distribution of wind loads, and (3) a non-linear finite element model utilized to simulate the structural behaviour of the guyed pre-stressed concrete pole considering material nonlinearity. A parametric study is conducted by varying the downbursts locations relative to the guyed pole while considering three different span values. The results of this parametric study are utilized to identify critical downburst configurations leading to peak straining actions on the pole and the guys. This is followed by comparing the obtained critical load cases to new load cases proposed to ASCE-74 loading committee. A non-linear failure analysis is then conducted for the three considered guyed pre-stressed concrete transmission line systems to determine the downburst jet velocity at which the pole systems fail.

Standard Work Process to Reduce a Risk of Track Exchange Work for Railroad (철도 운행선 변경작업의 리스크 저감을 위한 표준작업 프로세스 도출)

  • Yoon, Chang Geun;Park, Su Yeul;Kim, Seok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.6
    • /
    • pp.131-137
    • /
    • 2021
  • Since many resources are put into the work of changing the railway operation within limited time, it is important to have a specific work plan and safety management. For this reason, the work schedule is shared in advance, and parallel work is being carried out simultaneously by rail system, such as tracks, trolly wires, and signals. However, due to the nature of the transfer work, the work is carried out at night when the railway operation is finished, and many resources are put into the limited area of the operating line, so the risk of safety accidents and failure to change the operating line is recognized as high. Nevertheless, there is still not enough research done in korea regarding the operation line change construction. Therefore, this study is conducted a survey on the track exchange work of railroad for working people, and analyzed the results of the survey. Finally, a standard work process was suggested to reduce the risk of track exchange work.

A Study on the Wireless Sensor Network Routing Method and Fault Node Detection for Production Line (생산라인에 적용을 위한 무선 센서 네트워크 라우팅방식 및 고장노드 검출에 대한 연구)

  • Park, Jeong?Hyeon;Seo, Chang-Jun
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1104-1108
    • /
    • 2018
  • IIoT applies IoT to industrial sites to monitor factors such as production, manufacturing, and safety, and it is a solution that allows the worker to easily manage the site. An important technology element in this IIoT is a technology that collects information on industrial sites and delivers reliable information to managers using sensors. Therefore, general industrial sites use wired network methods such as Ethernet and RS485 to deliver information. However, there are limitations to the problem of infrastructure costs and to the wide range of line constructions in network deployment. Therefore, in this paper, the network of IEEE 802.15.4 Ad-Hoc wireless sensors is deployed on production lines with machine tools. In addition, we describe the routing method considering machine tool layout and sensor node failure detection algorithm.

Study on the influence of flow blockage in severe accident scenario of CAP1400 reactor

  • Pengcheng Gao;Bin Zhang ;Jishen Li ;Fan Miao ;Shaowei Tang ;Sheng Cao;Hao Yang ;Jianqiang Shan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.999-1008
    • /
    • 2023
  • Deformed fuel rods can cause a partial blockage of the flow area in a subchannel. Such flow blockage will influence the core coolant flow and further the core heat transfer during the reflooding phase and subsequent severe accidents. Nevertheless, most of the system analysis codes simulate the accident process based on the assumed flow blockage ratio, resulting in inconsistencies between simulated results and actual conditions. This paper aims to study the influence of flow blockage in severe accident scenario of the CAP1400 reactor. First, the flow blockage model of ISAA code is improved based on the FRTMB module. Then, the ISAA-FRTMB coupling system is adopted to model and calculate the QUENCH-LOCA-0 experiment. The correctness and validity of the flow blockage model are verified by comparing the peak cladding temperature. Finally, the DVI Line-SBLOCA accident is induced to analyze the influence of flow blockage on subsequent CAP1400 reactor core heat transfer and core degradation. From the results of the DVI Line-SBLOCA accident analysis, it can be concluded that the blockage ratio is in the range of 40%-60%, and the position of severe blockage is the same as that of cladding rupture. The blockage reduces the circulation area of the core coolant, which in turn impacts the heat exchange between the core and the coolant, leading to the early failure and collapse of some core assemblies and accelerating the core degradation process.

Seismic response study of tower-line system considering bolt slippage under foundation displacement

  • Jia-Xiang Li;Jin-Peng Cheng;Zhuo-Qun Zhang;Chao Zhang
    • Steel and Composite Structures
    • /
    • v.52 no.2
    • /
    • pp.135-143
    • /
    • 2024
  • Once the foundation displacement of the transmission tower occurs, additional stress will be generated on the tower members, which will affect the seismic response of transmission tower-line systems (TTLSs). Furthermore, existing research has shown that the reciprocating slippage of joints needs to be considered in the seismic analysis. The hysteretic behavior of joints is obtained by model tests or numerical simulations, which leads to the low modeling efficiency of TTLSs. Therefore, this paper first utilized numerical simulation and model tests to construct a BP neural network for predicting the skeleton curve of joints, and then a numerical model for a TTLS considering the bolt slippage was established. Then, the seismic response of the TTLS under foundation displacement was studied, and the member stress changes and the failed member distribution of the tower were analyzed. The influence of foundation displacement on the seismic performance were discussed. The results showed that the trained BP neural network could accurately predict the hysteresis performance of joints. The slippage could offset part of the additional stress caused by foundation settlement and reduce the stress of some members when the TTLS with foundation settlement was under earthquakes. The failure members were mainly distributed at the diagonal members of the tower leg adjacent to the foundation settlement and that of the tower body. To accurately analyze the seismic performance of TTLSs, the influence of foundation displacement and the joint effect should be considered, and the BP neural network can be used to improve modeling efficiency.