• Title/Summary/Keyword: failure line

Search Result 839, Processing Time 0.034 seconds

Fatigue analysis on the mooring chain of a spread moored FPSO considering the OPB and IPB

  • Kim, Yooil;Kim, Min-Suk;Park, Myong-Jin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.178-201
    • /
    • 2019
  • The appropriate design of a mooring system to maintain the position of an offshore structure in deep sea under various environmental loads is important. Fatigue design of the mooring line considering OPB/IPB(out-of-plane bending/in-plane bending) became an essential factor after the incident of premature fatigue failure of the mooring chain due to OPB/IPB in the Girassol region in West Africa. In this study, mooring line fatigue analysis was performed considering the OPB/IPB of a spread moored FPSO in deep sea. The tension of the mooring line was derived by hydrodynamic analysis using the de-coupled analysis method. The floater motion time histories were calculated under the assumption that the mooring line behaves in quasi-static manner. Additional time domain analysis was carried out by prescribing the obtained motions on top of the selected critical mooring line, which was determined based on spectral fatigue analysis. In addition, nonlinear finite element analysis was performed considering the material nonlinearities, and both the interlink stiffness and stress concentration factors were derived. The fatigue damage to the chain surface was estimated by combining both the hydrodynamic and stress analysis results.

A Design of a Fault Tolerant Control System Using On-Line Learning Neural Networks (온라인 학습 신경망 조직을 이용한 내고장성 제어계의 설계)

  • Younghwan An
    • Journal of KSNVE
    • /
    • v.8 no.6
    • /
    • pp.1181-1192
    • /
    • 1998
  • This paper describes the performance of a full-authority neural network-based fault tolerant system within a flight control system. This fault tolerant flight control system integrates sensor and actuator failure detection, identification, and accommodation (SFDIA and AFDIA), The first task is achieved by incorporating a main neural network (MNN) and a set of n decentralized neural networks (DNNs) to create a system for achieving fault tolerant capabilities for a system with n sensors assumed to be without physical redundancy The second scheme implements the same main neural network integrated with three neural network controllers (NNCs). The function of NNCs is to regain equilibrium and to compensate for the pitching, rolling. and yawing moments induced by the failure. Particular emphasis is placed in this study toward achieving an efficient integration between SFDIA and AFDIA without degradation of performance in terms of false alarm rates and incorrect failure identification. The results of the simulation with different actuator and sensor failures are presented and discussed.

  • PDF

On-Line Monitoring of Microscopic Fracture Behavior of Concrete Using Acoustic Emission (음향방출을 이용한 콘크리트 부재의 미시적 파괴특성의 온라인 모니터링)

  • Lee, Joon-Hyun;Lee, Jin-Kyung;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.1
    • /
    • pp.25-33
    • /
    • 1999
  • Since concrete is an inhomogeneous material consisting of larger aggregates and sand embedded in a cement paste matrix, it relatively shows a complex failure mechanism. In order to assure the reliability of concrete structure. microscopic fracture behavior and internal damage progress of concrete under the loading should be fully understood. In this study, an acoustic emission(AE) technique has been used to clarify microscopic failure mechanism and their corresponding AE signal characteristics of concrete under three-point bending test. In addition 2-dimensional AE source location has been performed to monitor the progress of an internal damage and the successive crack growth behavior during the loading. The relationship between AE signal characteristics and microscopic fracture mechanism is discussed.

  • PDF

Eletrostatic Discharge Effects on AlGaN/GaN High Electron Mobility Transistor on Sapphire Substrate (사파이어 기판을 사용한 AlGaN/GaN 고 전자이동도 트랜지스터의 정전기 방전 효과)

  • Ha Min-Woo;Lee Seung-Chul;Han Min-Koo;Choi Young-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.3
    • /
    • pp.109-113
    • /
    • 2005
  • It has been reported that the failure phenomenon and variation of electrical characteristic due to the effect of electrostatic discharge(ESD) in silicon devices. But we had fess reports about the phenomenon due to the ESD in the compound semiconductors. So there are a lot of difficulty to the phenomenon analysis and to select the protection method of main circuits or the devices. It has not been reported that the relation between the ESD stress and GaN devices, which is remarkable to apply the operation in high temperature and high voltage due to the superior material characteristic. We studied that the characteristic variation of the AlGaN/GaN HEMT current, the leakage current, the transconductance(gm) and the failure phenomenon of device due to the ESD stress. We have applied the ESD stress by transmission line pulse(TLP) method, which is widely used in ESD stress experiments, and observed the variation of the electrical characteristic before and after applying the ESD stress. The on-current trended to increase after applying the ESD stress. The leakage current and transconductance were changed slightly. The failure point of device was mainly located in middle and edge sides of the gate, was considered the increase of temperature due to a leakage current. The GaN devices have poor thermal characteristic due to usage of the sapphire substrate, so it have been shown to easily fail at low voltage compared to the conventional GaAs devices.

Water-hammer in the Pump Pipeline System with and without an Air-Chamber (에어챔버 설치에 따른 펌프관로계의 수격현상)

  • Lee, Sun-Kon;Yang, Cheol-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • When the pumps stopped in the operation by the power failure, the hydraulic transients take place in the sudden change of a velocity of pipe line. Each and every water hammer problem shows the critical stage to be greatly affected the facts of safety and reliability in case of power failure. The field tests of the water hammer executed at Cheong-Yang booster pump station having an air chamber. The effects were studied by both the practical experiments and the CFD(Computational Fluid Dynamics : Surge 2008). The result states that the system with water hammering protection equipment was much safer when power failure happens. The following data by a computational fluid dynamic analysis are to be shown below, securing the system stability and integrity. (1) With water hammering protection equipment. (1) Change of pressure : Up to $15.5\;kg/cm^2$ in contrary to estimating $16.88\;kg/cm^2$. (2) Change rate of water level : 52~33% in contrary to estimating 55~27%. (3) Note that the operational pressure of pump runs approx. 145 m, lowering 155 m of the regularity head of pump. (4) Note that the cycle of water hammering delays from 80 second to 100 second, together with easing the function of air value at the pneumatic lines. (2) Change of pressure without water hammering protection equipment : Approximate $22.86\;kg/cm^2$. The comprehensive result says that the computational fluid dynamics analysis would match well with the practical field-test. It was able to predict Max. or Min. water hammering time in a piping system. This study aims effectively to alleviate water hammering in a pipe line to be installed with air chamber at the pumping station and results in making the stability of pump system in the end.

The clinical outcomes of second-line chemotherapy in patients with advanced pancreatic cancer: a retrospective study

  • Jung, Hyun yeb;Lee, Eun Mi
    • Journal of Yeungnam Medical Science
    • /
    • v.39 no.2
    • /
    • pp.124-132
    • /
    • 2022
  • Background: Despite recent advances in first-line chemotherapy for advanced pancreatic cancer, standard treatment after the failure of initial chemotherapy has not been established. Hence, we aimed to retrospectively analyze the clinical characteristics and outcomes of second-line chemotherapy in patients with advanced pancreatic cancer. Methods: We reviewed the clinical data of patients with advanced pancreatic cancer who underwent palliative chemotherapy at Kosin University Gospel Hospital between January 2013 and October 2020. Results: Among 366 patients with advanced pancreatic cancer who had received palliative chemotherapy, 104 (28.4%) underwent at least one cycle of second-line chemotherapy. The median age of the patients at the time of initiating second-line treatment was 62 years (interquartile range, 57-62 years), and 58.7% (61 patients) of them were male. The common second-line chemotherapy regimens were 5-fluorouracil (FU) plus leucovorin, irinotecan, and oxaliplatin (33 patients, 31.7%); gemcitabine/nab-paclitaxel (29, 27.9%), gemcitabine±erlotinib (13, 12.5%); and oxaliplatin and 5-FU/leucovorin (12, 11.5%). The median overall survival (OS) and progression-free survival were 6.4 months (95% confidence interval [CI], 4.5-8.6 months) and 4.5 months (95% CI, 2.7-6.3 months), respectively. In a multivariate analysis, poor performance status (PS) (hazard ratio [HR], 2.247; p=0.021), metastatic disease (HR, 2.745; p=0.011), and elevated carcinoembryonic antigen (CEA) levels (HR, 1.939; p=0.030) at the beginning of second-line chemotherapy were associated with poor OS. Conclusion: The survival outcome of second-line chemotherapy for advanced pancreatic cancer remains poor. However, PS, disease extent (locally advanced or metastatic), and CEA level may help determine patients who could benefit from second-line treatment.

Prediction of Slope Failure Using Control Chart Method (통계관리도 기법을 적용한 사면붕괴 예측)

  • Park, Sung-Yong;Chang, Dong-Su;Jung, Jae-Hoon;Kim, Young-Ju;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.2
    • /
    • pp.9-18
    • /
    • 2018
  • In this study, a field model experiment was performed to analyze the bahavior of slope during failure. It was analyzed through x-MR control chart method with inverse displacement and K-value. As a result, the portent was confirmed at 4 minutes before slope failure in Case 1. The change of the control limit line according to moving range was analyzed and it was effective to apply K = 3. Use of the inverse displacement and x-MR control chart method will be useful for the prediction of abnormal behavior through quick and objective judgment. Prediction of slope failure using control chart method can be used as basic data of slope measurement management standard, and it can contribute in reduction of life and property damage caused by slope disaster.

Planar (Rolling) Shear Strength of Structural Panels Using 5-point Bending Test (5점 휨하중 시험법을 사용한 구조용 판넬의 굴림전단강도)

  • Oh, Sei Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.425-436
    • /
    • 2018
  • This study was conducted to evaluate the planar (rolling) shear strength of OSB (oriented strand board) panels and domestic plywood through 5 point bending test method in ASTM D2718 standard. The test specimens were prepared in parallel and perpendicular direction to major axis (along the length of panels) and tested up to failure, and failure modes were also examined. From the test results, rolling shear strength were found to be $1.32{\sim}1.94N/mm^2$ in parallel to major axis, and $1.46{\sim}1.99N/mm^2$ in perpendicular to major axis respectively. Little difference was found between parallel and perpendicular direction of rolling shear strength. There were no statistically significant differences in rolling shear strength between Canadian OSB and domestic plywood in the parallel direction, and between Chilean OSB and domestic plywood in the perpendicular direction. The shear failure was observed in all tested OSB panels, whereas shear failure, glue line delamination, and bending combined with shear failure were observed in the domestic plywood.

The Analysis on the Effects of the Failure Reduction Strategies of the Railway Facilities (도시철도 시설물 장애감소 전략과 효과 분석- 서울도시철도공사를 중심으로 -)

  • Yun, Seong-Chan;Park, Jong-Hun;Kim, Sung-Chun;Eum, Sung-Jik
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.6
    • /
    • pp.608-616
    • /
    • 2010
  • Seoul Metropolitan Rapid Transit Corporation, managing the line number 5,6,7 and 8 has inspected and maintained for the maintenance of the facilities spread in the extended 152km and 148 stations. Despite the thorough inspection for prevention of the facility failure, the failure has continuously occurred, due to the environmental factors of the underground, mechanical worn-out caused by frequent use, aging facilities, system error, negligence on use, etc. We have achieved a 53.4% reduction in the number of failure by the end of June, 2010 by breaking the conventional way of inspections and maintenance and by adopting quantitative goal management and new way of work. In this paper, we will analyze the problems of inspections and maintenance of the railway facilities, the failure reduction strategy and the performance of each strategy.

Waterhammer for the In-Line Intake Pumping Station with Air Chamber (에어챔버가 설치된 인라인 취수펌프장에서 수격현상)

  • Kim, Kyung-Yup;Ahn, Cheoul-Hong;Kim, Bum-Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.70-76
    • /
    • 2012
  • Recently, because people are taking a great interest in the water supply system and the related facilities are getting larger, the surge suppression is very important problem. The waterhammer occurs when the pumps are started or stoped for operation or tripped due to the power failure. As the waterhammer problems as a result of the pump power failure were very serious, these situations were carefully investigated. Accordingly, we carried out both numerical simulations and field tests to confirm the safety of Juam intake pumping station in which had the in-line pumps. In this paper, it was reviewed that the water supply system has the reliability on the pressure surge, in case the air chambers were installed at both the inlet and the oulet of the in-line pumping station. From the numerical simulations, we found that negative pressure occurred at the inlet disappeared and high pressure occurred at the outlet reduced due to the air chambers. And these results of numerical simulations verified by the field tests. The field tests carried out in case of normal start, normal stop, one and two of pumps emergency stop. By results of simulations and field tests, we are sure that Juam intake pumping station in which have the air chambers is safe for the waterhammer. In addition, we suggested the operation methods of facilities for safe maintenance of the pumping station.