• Title/Summary/Keyword: failure line

Search Result 839, Processing Time 0.027 seconds

Design and Application of Accelerated Run-in Test for ECU Quality Improvement (ECU 품질 개선을 위한 Accelerated Run-in Test 설계 및 효과고찰)

  • Cho, Hyogeun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.145-151
    • /
    • 2014
  • Modern vehicle has a lot of ECU(Electronic Control Unit) products to control many parts such as engine, transmission, brake, body and so on. ECU quality is one of important factors related to vehicle quality and driver's safety. Based on Bath-tub curve which presents failure rate during product lifetime, we designed and applied Accelerated Run-in Test into manufacturing line by simulating stress amount to ECU and developing the required software and efficient test equipment for mass production. This test makes ECU products stressed through electrical and thermal stresses under excessive driving condition, which induce potential initial failure of components in the ECU during production. The outcome until these days proved that Acceleration Run-in Test have reduced initial failure rates and increased quality of ECU products in the field outstandingly.

Study on Optimaization of Heating Element Gap in Resistance Welding using Thermoplastic resin (열가소성 수지 저항용접에서 발열체 간격의 최적화에 관한 연구)

  • Yun, Ho-Cheol;Im, Pyo;Im, Jae-Gyu
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.26-28
    • /
    • 2007
  • This research is concerned with a study of failure strength evaluation on heat element gap at resistance welding. The failure strength of resistance welded joint is changed by welding factor like as current(power level), welding time(total energy), pressure etc. and another heat element factor like as number of element line, element gap etc. Tensile-shear tests were carried out with the single-lap specimen using polypropylene(PP). The failure mechanism and optimization of gap was discussed in order to explain the tensile-shear strength evaluation on heat element gap at resistance welding. Orthogonal array was used by fractional factorial design for efficient experiments.

  • PDF

Preliminary study on the Condition Monitoring of Wind-turbine Gearbox (풍력발전기용 증속기 상태 모니터링에 관한 기초 연구)

  • Park, Young-Jun;Lee, Jae-Jeong;Lee, Geun-Ho;Nam, Yong-Yun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.343-346
    • /
    • 2008
  • To improve the reliability and extend the life for a wind-turbine gearbox, the gearbox needs to be monitored and analysed exactly. This study was conducted to analyze and detect the gearbox conditions when lubricating oil contaminated by wear particles was used. Characteristics of the gearbox failure by wear particles were monitored simultaneously by the on-line measurement sensor of vibration, oil condition and temperature. For the detail vibration analyses, frequency analysis(FFT) was performed. The results of the study were summarized as follows: Vibrational signal was found sensitive to abnormal changes of the gearbox conditions when lubricant was contaminated by wear particles. Also, using frequency analysis for the harmonics of gear mesh frequency(GMF), it is found that the failure of gearbox was caused by the damages of meshing gears. However, temperature and oil condition measuring signals were found not so effective to detect any gearbox failure by oil contamination.

  • PDF

Consideration of cable cross bonding and cable covering protection units (케이블 크로스본드 및 CCPU 적용검토)

  • Kim, Young;Kim, Jang-Woen;Seong, Jeong-Kue
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1646-1648
    • /
    • 1994
  • In the system of underground transmission line, the rate of electrical failure is very low, but, if once occuring, the failure evolves into a paralysis of the system, the time of restoration is very long, the damage from stopping of power supply is very serious, and the cost of restoration is very great. Because of these problems, you must try to protect the system and equipment from every electrical failure by contributing much carefulness to the design and operation of the underground system. This study summerizes the results of simmulation tests about the effect of installing this protection device on the insulated joint box and the terminal end box.

  • PDF

The Estimation of Shape Parameter of Pneumatic Cylinders (공압 실린더의 신뢰성 평가를 위한 형상모수 추정에 관한 연구)

  • Kang, B.S.;Song, C.S.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.127-132
    • /
    • 2006
  • Pneumatic cylinders that are usually applied in the factory automation line have complicated failure cause because they are composed of various elements. In this study, we performed life test and performance test of double acting pneumatic cylinders according to the international standards and then analyzed the life and the main failure mode of the cylinders in the same load condition. On the basis of these processes, we can estimate shape parameter for the reliability estimation of pneumatic cylinders and their data analysis of life distribution.

  • PDF

Aero-elastic response of transmission line system subjected to downburst wind: Validation of numerical model using experimental data

  • Elawady, Amal;Aboshosha, Haitham;El Damatty, Ashraf
    • Wind and Structures
    • /
    • v.27 no.2
    • /
    • pp.71-88
    • /
    • 2018
  • At the University of Western Ontario (UWO), numerical tools represented in semi-closed form solution for the conductors and finite element modeling of the lattice tower were developed and utilized significantly to assess the behavior of transmission lines under downburst wind fields. Although these tools were validated against other finite element analyses, it is essential to validate the findings of those tools using experimental data. This paper reports the first aeroelastic test for a multi-span transmission line under simulated downburst. The test has been conducted at the three-dimensional wind testing facility, the WindEEE dome, located at the UWO. The experiment considers various downburst locations with respect to the transmission line system. Responses obtained from the experiment are analyzed in the current study to identify the critical downburst locations causing maximum internal forces in the structure (i.e., potential failure modes), which are compared with the failure modes obtained from the numerical tools. In addition, a quantitative comparison between the measured critical responses obtained from the experiment with critical responses obtained from the numerical tools is also conducted. The study shows a very good agreement between the critical configurations of the downburst obtained from the experiment compared to those predicted previously by different numerical studies. In addition, the structural responses obtained from the experiment and those obtained from the numerical tools are in a good agreement where a maximum difference of 16% is found for the mean responses and 25% for the peak responses.

Transient Effects of Wind-wave Hybrid Platform in Mooring Line Broken Condition (부유식 파력-해상풍력 복합발전 구조물의 계류선 손상 시 과도 응답 해석)

  • Bae, Yoon Hyeok;Lee, Hyebin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.2
    • /
    • pp.129-136
    • /
    • 2016
  • Floating offshore structures keep its position by a mooring system against various kind of environmental loadings. For this reason, a reliable design of the mooring system is a key factor for initial design stage of a floating structure. However, there exists possibility of mooring failure, even the system is designed with enough safety margin, due to the unexpected extreme environmental conditions or long-term fatigue loadings. The breaking of one of the mooring lines may change the tension level of the other mooring lines, which can potentially result in a progressive failure of the entire structure. In this study, time domain numerical simulation of 10MW class wind-wave hybrid platform was carried out with partially broken mooring line. Overall platform responses and variations of the mooring line tension were numerically evaluated.

A Quantitative Physical Parameter for Detection of Ultimate Failure State of Soil Using CEL Method in Finite Element Analysis (CEL 기법을 이용한 유한 요소 해석에서 지반의 극한 파괴 상태 감지를 위한 정량적 물리량 기준)

  • Kim, Seongmin;Lee, Ju-Hyung;Jung, Young-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.59-69
    • /
    • 2018
  • In order to use the limit equilibrium theory, it is necessary to find a slip line under the ultimate failure condition. The strength reduction method using the Lagrangian finite element method defines the ultimate failure state at a time when the numerical solution cannot converge within the certain number of the iteration. When the coupled Eulerian-Lagrangian (CEL) method is used, however, such definition is inappropriate because the numerical solution of the CEL method can converge even under the ultimate failure condition. In this study, an objective condition designating the ultimate failure state in the finite element analysis adopting the CEL method was proposed. In the problem of the bearing capacity of the undrained soft ground subjected to the strip footing loading, we found that the rate of the plastic dissipated energy is highly sensitive at the load of the theoretical limit of the ultimate failure state.

Prediction of Flashover and Pollution Severity of High Voltage Transmission Line Insulators Using Wavelet Transform and Fuzzy C-Means Approach

  • Narayanan, V. Jayaprakash;Sivakumar, M.;Karpagavani, K.;Chandrasekar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1677-1685
    • /
    • 2014
  • Major problem in the high voltage power transmission line is the flashover due to polluted ceramic insulators which leads to failure of equipments, catastrophic fires and power outages. This paper deals with the development of a better diagnostic tool to predict the flashover and pollution severity of power transmission line insulators based on the wavelet transform and fuzzy c-means clustering approach. In this work, laboratory experiments were carried out on power transmission line porcelain insulators under AC voltages at different pollution conditions and corresponding leakage current patterns were measured. Discrete wavelet transform technique is employed to extract important features of leakage current signals. Variation of leakage current magnitude and distortion ratio at different pollution levels were analyzed. Fuzzy c-means algorithm is used to cluster the extracted features of the leakage current data. Test results clearly show that the flashover and pollution severity of power transmission line insulators can be effectively realized through fuzzy clustering technique and it will be useful to carry out preventive maintenance work.