• Title/Summary/Keyword: failure function

Search Result 1,796, Processing Time 0.031 seconds

Optimization for Buckling and Postbuckling Behavior of Stiffened Fiber Reinforced Composite Panels (보강된 섬유강화 복합재료 패널의 좌굴해석 및 파손강도의 최적 설계)

  • Lee, Gwang-Rog;Yang, Won-Ho;Cho, Mung-Rae;Sung, Ki-Deug
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.913-919
    • /
    • 2001
  • In this study, fiber orientation of stiffener was conducted to increase buckling load or failure load in each case with a different design value and a different objective function for stiffened laminated composite panel of I-type under compression loading. Regarding each of buckling load or failure load as objective function, optimum design was carried out. In respect of optimum design, it was investigated that optimum shape for buckling could improve fail load for postbuckling, because it was difficult to investigate the optimization of postbuckling which need long analysis times for nonlinear analysis.

  • PDF

Effect of Processed Cyperi Rhizoma on Rat Kidney Function (수치(修治) 향부자 분획물의 흰쥐 신기능에 미치는 영향)

  • Kim, Tae-Hee;Yang, Ki-Sook;Park, Ji-Young
    • YAKHAK HOEJI
    • /
    • v.42 no.1
    • /
    • pp.70-74
    • /
    • 1998
  • Cyperus rotundus L. (Cyperaceae) has been used as an analgesic, antiinflammatoty agent, diuretic and emmenagoga in folk remedies. Cyperi Rhizomata, processed and unproces sed, were extracted with MeOH and fractionated with petroleum ether (Pet. Ether), $CHCl_3$, BuOH, water. In order to investigate the effects of their fractions on kidney function of acute renal failure rats induced by $HgCl_2$ urinary volume, BUN, Creatinine, Uric acid were determined. The diuretic effect of processed Cyperi Rhizoma was significantly increased in renal failure rats, on serum chemical parameters, the significant inhibition of BUN (blood urea nitrogen) of processed Cyperi Rhizoma was revealed.

  • PDF

A Study on the Balise Failure Analysis & Effects for ETCS Application (ETCS 적용 구간에서의 발리스 고장 분석 및 영향에 관한 연구)

  • Lee, Myoung-Chol;Kim, Chang-Hoon;Ji, Jung-Gun;Lee, Jong-Woo
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.717-723
    • /
    • 2011
  • When the Balise(the device to transmit information between the on-board equipment and the wayside equipment) failure occurs, it may not be able to transmit data(Telegram) required for the train running. And in some cases, it may be able to cause an accident. Therefore, both the Balise failure affecting train safety running and the hazard in accordance with Balise failure require some activities to establish them. General failure mode & hazard analysis associated with the Balise are described in UNISIG SUBSET-036 spec & UNISIG SUBSET-088 spec. And, with reference to these specifications, safety activities are being performed. In recent domestic railway, the train control system applying ETCS(European Train Control System) Level 1, 2 is being serviced and is being planned, and as part of this system, the Balise is being applied. The design-method of the Balise device for each manufacturer are different, therefore the Balise failure mode & failure rate are different, either. But the functionalities & transmission-data format(Telegram) of the Balise in ETCS Level 1, 2 application for each manufacturer are identical. Accordingly, the hazard caused by function-fail can be identical, either. In order to establish these hazard, in this paper, we analyzed the detailed functions of the Balise. And we analyzed the Balise failure types & failure effects in accordance with the detailed functions.

  • PDF

Study on a Optimal Inspection Cycle of Electrical facility of Railroad (철도전기설비의 최적점검주기에 관한 기초연구)

  • Chu, Cheol-Min;Kim, Jae-Chul;Lee, Tae-Hee;An, Jae-Min;Moon, Jong-Fil
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.224-228
    • /
    • 2007
  • It is focused on a methodology to establish a optimal inspection cycle of electrical facility of railroad Decision method of optimal inspection cycle is a process which establishes maintenance plan for facilities' immanent function as using reliability theory in operation term In order to ensure normal operation in a given condition, the decision method is logical for selecting effective maintenance plan to consider characteristic of system In estimation of failure rate, critical facility is selected firstly. After that, proper distribution function on each facility is decided to investigate distribution function for extraction of failure rate. Next, cost produced by the case that facility's failure is occurred is surveyed. Finally, maintenance method developed until now is investigated, before suitable model for the facility applying maintenance method is developed, and that maintenance decision is made. Therefore, this process is the method to find optimal inspection cycle for reasonable cost and effective reliability on facility.

  • PDF

A Study on the Reliability Evaluation of Communication Networks by Matrix Transformation (행열변현에 의한 통신망의 신뢰도 계정에 관한 연구)

  • 김영근;오영환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.13 no.5
    • /
    • pp.379-389
    • /
    • 1988
  • In this paper, an algorithm for obtaining 2-state switching failure function and a terminal pair reliability evaluation method in a communication network are proposed. The communication network is modeled by a graph. By using the sequence of matrix transformations for the graph, minimal cut-set matrix representing all minimal cut-sets which completely interrupt the communication path is determined and 2-state switching failure function is then obtained from the minimal cut-set matrix. The terminal pari reliability of the communication network is evaluated by corresponding the random variables to 2-state switching failure function. Illustrative examples are provided to demonstrate the algorithm. A computer program evaluating the terminal pair reliability in a complex and large network has also been developed.

  • PDF

Probabilistic Failure-time Analysis of Soil Slope under Rainfall Infiltration by Numerical Analysis (수치해석에 의한 강우 침투 시 사면 파괴시간의 확률론적 해석)

  • Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.12
    • /
    • pp.45-58
    • /
    • 2019
  • In this study, a stochastic analysis procedure based on numerical analysis was proposed to evaluate a kind of intensity-duration rainfall threshold for the initiation of slope failure due to rainfall infiltration. Fragility curves were generated as a function of rainfall intensity-duration from the results of probabilistic slope stability analysis by MCS considering the uncertainty of the soil shear strength, reflecting the results of infiltration analysis of rainfall over time. In the probabilistic analysis, slope stability analyses combined with the infiltration analysis of rainfall were performed to calculate the limit state function. Using the derived fragility curves, a chart showing the relationship between rainfall intensity and slope failure-time was developed. It is based on a probabilistic analysis considering the uncertainty of the soil properties. The proposed probabilistic failure distribution analysis could be beneficial for analyzing the time-dependent failure process of soil slopes due to rainfall infiltration, and for predicting when the slope failure should occur.

Failure Probability Analysis of Concrete Cofferdam Considering the Overflow in Flood Season (홍수시 월류를 고려한 콘크리트 가물막이댐의 파괴확률 산정)

  • Hong, Won Pyo;Song, Chang Geun
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.5
    • /
    • pp.30-38
    • /
    • 2020
  • In order to construct a dam, the diversion facility such as cofferdam and a diversion tunnel should be installed in advance. And size of a cofferdam depends on type of a main dam. According to the Korea Dam Design Standard, if the main dam is a concrete dam, design flood of the cofferdam is 1~2 years flood frequency. This means that overflow of the cofferdam occurs one time for 1 or 2 years, therefore, stability of the cofferdam should be secured against any overflow problem. In this study, failure probability analysis for the concrete cofferdam is performed considering the overflow. First of all, limit state function of the concrete cofferdam is defined for overturning, sliding and base pressure, and upstream water levels are set as El. 501 m, El. 503 m, El. 505 m, El. 507 m. Also, after literature investigation research, probabilistic characteristics of various random variables are determined, the failure probability of the concrete cofferdam is calculated using the Monte Carlo Simulation. As a result of the analysis, when the upstream water level rises, it means overflow, the failure probability increases rapidly. In particular, the failure probability is largest in case of flood loading condition. It is considered that the high upstream water level causes increase of the upstream water pressure and the uplift pressure on the foundation. In addition, among the overturning, the sliding and the base pressure, the overturing is the major cause for the cofferdam failure considering the overflow.

Optimizing Concurrent Spare Parts Inventory Levels for Warships Under Dynamic Conditions

  • Moon, Seongmin;Lee, Jinho
    • Industrial Engineering and Management Systems
    • /
    • v.16 no.1
    • /
    • pp.52-63
    • /
    • 2017
  • The inventory level of concurrent spare parts (CSP) has a significant impact on the availability of a weapon system. A failure rate function might be of particular importance in deciding the CSP inventory level. We developed a CSP optimization model which provides a compromise between purchase costs and shortage costs on the basis of the Weibull and the exponential failure rate functions, assuming that a failure occurs according to the (non-) homogeneous Poisson process. Computational experiments using the data obtained from the Korean Navy identified that, throughout the initial provisioning period, the optimization model using the exponential failure rate tended to overestimate the optimal CSP level, leading to higher purchase costs than the one using the Weibull failure rate. A Pareto optimality was conducted to find an optimal combination of these two failure rate functions as input parameters to the model, and this provides a practical solution for logistics managers.

Effect of Boundary Conditions on Failure Probability of Buried Pipeline (매설배관의 경계조건이 파손확률에 미치는 영향)

  • Lee, Ouk-Sub;Pyun, Jang-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.311-316
    • /
    • 2001
  • A failure probability model based on Von-Mises failure criterion and the standard normal probability function is proposed. The effects of varying boundary conditions such as internal fluid pressure, external soil, traffic loads, temperature change and corrosion on failure probability of the buried pipes are systematically investigated. To allow for the uncertainties of the design variables, a reliability analysis technique has been adopted; this also allows calculation of the relative contribution of the random variables and the sensitivity of the failure probability.

  • PDF

FTA(Falut tree Analysis)기법을 이용한 이송용 로울러베어링 고장 진단

  • 배용환;이석희;이형국;최진원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.325-329
    • /
    • 1992
  • The development of automatic production system have required intelligent diagnostic and monitoring function to repair system failure and reduce production loss by the failure. In order to perform accurate functions of intelligent system, inference about total system failure and fault analysis due to each mechanical component failures are required. Also the solution about repair and maintenance can be suggested from these analysis results. Generally, bearing is a essential mechanical component in the machinery. The bearing failure is caused by lubricant system failure, metallurgical defficiency, mechanical condition(vibration overloading misalignment), environmental effect. This study described roller bearing fault train due to stress variation and metallurgical defficiency from lubricant failure by using FTA.