In this paper, I propose a system development methodology that accepts images taken by camera attached to drone in real time while controlling mini drone and recognize and confirm the face of certain person. For the development of this system, OpenCV, Python related libraries and the drone SDK are used. To increase face recognition ratio of certain person from real-time drone images, it uses Deep Learning-based facial recognition algorithm and uses the principle of Triples in particular. To check the performance of the system, the results of 30 experiments for face recognition based on the author's face showed a recognition rate of about 95% or higher. It is believed that research results of this paper can be used to quickly find specific person through drone at tourist sites and festival venues.
International Journal of Computer Science & Network Security
/
v.21
no.8
/
pp.288-296
/
2021
Automated face recognition in a runtime environment is gaining more and more important in the fields of surveillance and urban security. This is a difficult task keeping in mind the constantly volatile image landscape with varying features and attributes. For a system to be beneficial in industrial settings, it is pertinent that its efficiency isn't compromised when running on roads, intersections, and busy streets. However, recognition in such uncontrolled circumstances is a major problem in real-life applications. In this paper, the main problem of face recognition in which full face is not visible (Occlusion). This is a common occurrence as any person can change his features by wearing a scarf, sunglass or by merely growing a mustache or beard. Such types of discrepancies in facial appearance are frequently stumbled upon in an uncontrolled circumstance and possibly will be a reason to the security systems which are based upon face recognition. These types of variations are very common in a real-life environment. It has been analyzed that it has been studied less in literature but now researchers have a major focus on this type of variation. Existing state-of-the-art techniques suffer from several limitations. Most significant amongst them are low level of usability and poor response time in case of any calamity. In this paper, an improved face recognition system is developed to solve the problem of occlusion known as FRS-OCC. To build the FRS-OCC system, the color and texture features are used and then an incremental learning algorithm (Learn++) to select more informative features. Afterward, the trained stack-based autoencoder (SAE) deep learning algorithm is used to recognize a human face. Overall, the FRS-OCC system is used to introduce such algorithms which enhance the response time to guarantee a benchmark quality of service in any situation. To test and evaluate the performance of the proposed FRS-OCC system, the AR face dataset is utilized. On average, the FRS-OCC system is outperformed and achieved SE of 98.82%, SP of 98.49%, AC of 98.76% and AUC of 0.9995 compared to other state-of-the-art methods. The obtained results indicate that the FRS-OCC system can be used in any surveillance application.
Background: An inability to cope with threatening dental stimuli, i.e., sight, sound, and sensation of airotor, manifests as anxiety and behavioral management problems. Behavior modification techniques involving pre-exposure to dental equipment will give children a first-hand experience of their use, sounds, and clinical effects. The aim of this study was to compare the techniques of Tell-Show-Play-doh, a smartphone dentist game, and a conventional Tell-Show-Do method in the behavior modification of anxious children in the dental operatory. Methods: Sixty children in the age group of 4-8 years, with Frankl's behavior rating score of 2 or 3, requiring Class I and II cavity restorations were divided into three groups. The groups were Group 1: Tell-Show-Play-doh; Group 2: smartphone dentist game; and Group 3: Tell-Show-Do technique and each group comprised of 20 children. Pulse rate, Facial Image Scale (FIS), Frankl's behavior rating scale, and FLACC (Face, Leg, Activity, Cry, Consolability) behavior scales were used to quantify anxious behavior. Operator compliance was recorded through a validated questionnaire. Results: The results showed lower mean pulse rates, lower FIS and FLACC scores, higher percentage of children with Frankl's behavior rating score of 4, and better operator compliance in both the Tell-Show-Play-doh and smartphone dentist game groups than in the conventional Tell-Show-Do group. Conclusion: The Tell-Show-Play-doh and smartphone dentist game techniques are effective tools to reduce dental anxiety in pediatric patients.
Background: Dental anxiety in children is a major barrier in patient management. If dental anxiety in pediatric patients is assessed during the first visit, it will not only aid in management but also help to identify patients who are in need of special care to deal with their fear. Nowadays, children and adults are highly interested in multimedia and are closely associated with them. Children usually prefer motion pictures on electronic devices than still cartoons on paper. Therefore, this study was conducted to evaluate a newly designed scale, the animated emoji scale (AES), which uses motion emoticons/animojis to assess dental anxiety in children during their first dental visit, and compare it with the Venham picture test (VPT) and facial image scale (FIS). Methods: The study included 102 healthy children aged 4-14 years, whose dental anxiety was measured using AES, VPT, and FIS during their first dental visit, and their scale preference was recorded. Results: The mean anxiety scores measured using AES, FIS, and VPT, represented as $mean{\pm}SD$, were $1.78{\pm}1.19$, $1.93{\pm}1.23$, and $1.51{\pm}1.84$, respectively. There was significant difference in the mean anxiety scores between the three scales (Friedman test, P < 0.001). The Pearson's correlation test showed a very strong correlation (0.73) between AES and VPT, and a strong correlation between AES and FIS (0.88), and FIS and VPT (0.69), indicating good validity of AES. Maximum number of children (74.5%) preferred AES. Conclusion: The findings of this study suggest that the AES is a novel and child-friendly tool for assessing dental anxiety in children.
Multi-view learning considers data from various viewpoints as well as attempts to integrate various information from data. Multi-view learning has been studied recently and has showed superior performance to a model learned from only a single view. With the introduction of deep learning techniques to a multi-view learning approach, it has showed good results in various fields such as image, text, voice, and video. In this study, we introduce how multi-view learning methods solve various problems faced in human behavior recognition, medical areas, information retrieval and facial expression recognition. In addition, we review data integration principles of multi-view learning methods by classifying traditional multi-view learning methods into data integration, classifiers integration, and representation integration. Finally, we examine how CNN, RNN, RBM, Autoencoder, and GAN, which are commonly used among various deep learning methods, are applied to multi-view learning algorithms. We categorize CNN and RNN-based learning methods as supervised learning, and RBM, Autoencoder, and GAN-based learning methods as unsupervised learning.
Linkov, Gary;Wick, Elizabeth;Kallogjeri, Dorina;Chen, Collin L.;Branham, Gregory H.
Archives of Plastic Surgery
/
v.46
no.3
/
pp.248-254
/
2019
Background No head to head comparison is available between surgical lip lifting and upper lip filler injections to decide which technique yields the best results in patients. Despite the growing popularity of upper lip augmentation, its effect on societal perceptions of attractiveness, successfulness and overall health in woman is unknown. Methods Blinded casual observers viewed three versions of independent images of 15 unique patient lower faces for a total of 45 images. Observers rated the attractiveness, perceived success, and perceived overall health for each patient image. Facial perception questions were answered on a visual analog scale from 0 to 100, where higher scores corresponded to more positive responses. Results Two hundred and seventeen random observers with an average age of 47 years (standard deviation, 15.9) rated the images. The majority of observers were females (n=183, 84%) of white race (n=174, 80%) and had at least some college education (n=202, 93%). The marginal mean score for perceived attractiveness from the natural condition was 1.5 points (95% confidence interval [CI], 0.9-2.18) higher than perceived attractiveness from the simulated upper lip filler injection condition, and 2.6 points higher (95% CI, 1.95-3.24) than the simulated upper lip lift condition. There was a moderate to strong correlation between the scores of the same observer. Conclusions Simulated upper lip augmentation is amenable to social perception analysis. Scores of the same observer for attractiveness, successfulness, and overall health are strongly correlated. Overall, the natural condition had the highest scores in all categories, followed by simulated upper lip filler, and lastly simulated upper lip lift.
Journal of the Korea Institute of Information and Communication Engineering
/
v.23
no.4
/
pp.381-387
/
2019
The limitations of applying a variety of artificial intelligence to the medical community are, first, subjective views, extensive interpreters and physical fatigue in interpreting the image of an interpreter's illness. And there are questions about how long it takes to collect annotated data sets for each illness and whether to get sufficient training data without compromising the performance of the developed deep learning algorithm. In this paper, when collecting basic images based on acne data sets, the selection criteria and collection procedures are described, and a model is proposed to classify data into small loss rates (5.46%) and high accuracy (96.26%) in the sequential structure. The performance of the proposed model is compared and verified through a comparative experiment with the model provided by Keras. Similar phenomena are expected to be applied to the field of medical and skin care by applying them to the acne classification model proposed in this paper in the future.
Journal of Physiology & Pathology in Korean Medicine
/
v.35
no.6
/
pp.267-273
/
2021
Mibyeong (sub-health) is a concept that represents the sub-health in traditional East Asian medicine. Assuming that the nose sizes and shapes are related to respiratory function, in this study, we hypothesized that the nose size and shape features are related to the self-rated health (SRH) level and self-rated Mibyeong severity, and aimed to assess this relationship using a fully automated image analysis system. The nose size features were evaluated from the frontal and profile face images of 810 participants. The nose size features consisted of five length features, one area feature, and one volume feature. The level of SRH and the Mibyeong severity were determined using a questionnaire. The normalized nasal height was negatively associated with the self-rated health score (SRHS) (partial ρ = -0.125, p = 3.53E-04) and the Mibyeong score (MBS) (partial ρ = -.172, p = 9.38E-07), even after adjustment for sex, age, and body mass index. The normalized nasal volume (ρ = -.105, p = 0.003), the normalized nasal tip protrusion length (ρ = -.087, p = 0.014), and the normalized nares width (ρ = -.086, p = .015) showed significant correlation with the SRHS. The normalized nasal area (ρ = -.118, p = 0.001), the normalized nasal volume (ρ = -.107, p = .002) showed significant correlation with the MBS. The wider, longer, and larger the nose, the lower the SRHS and MBS, indicating that health status can be estimated based on the size and shape features of the nose.
Purpose: The aim of this study was to evaluate the reliability of the Vectra M3 (3D Imaging System; Canfield Scientific, Parsippany, NJ, USA) in detecting chin asymmetry, and to assess whether the automatic markerless tracking function is reliable compared to manually plotting landmarks. Materials and Methods: Twenty subjects (18 females and 2 males) with a mean age of 42.5±10.5 years were included. Three-dimensional image acquisition was carried out on all subjects with simulated chin deviation in 4 stages (1-4 mm). The images were analyzed by 2 independent observers through manually plotting landmarks and by Vectra software auto-tracking mode. Repeated-measures analysis of variance and the Tukey post-hoc test were performed to evaluate the differences in mean measurements between the 2 operators and the software for measuring chin deviation in 4 stages. The intraclass correlation coefficient (ICC) was calculated to estimate the intra- and inter-examiner reliability. Results: No significant difference was found between the accuracy of manually plotting landmarks between observers 1 and 2 and the auto-tracking mode (P=0.783 and P=0.999, respectively). The mean difference in detecting the degree of deviation according to the stage was <0.5 mm for all landmarks. Conclusion: The auto-tracking mode could be considered as reliable as manually plotted landmarks in detecting small chin deviations with the Vectra® M3. The effect on the soft tissue when constructing a known dental movement yielded a small overestimation of the soft tissue movement compared to the dental movement (mean value<0.5 mm), which can be considered clinically non-significant.
In this paper, we propose a semi-supervised domain adaptation solution to deal with practical face recognition (FR) scenarios where a single face image for each target identity (to be recognized) is only available in the training phase. Main goal of the proposed method is to reduce the discrepancy between the target and the source domain face images, which ultimately improves FR performances. The proposed method is based on the Domain Adatation network (DAN) using an MMD loss function to reduce the discrepancy between domains. In order to train more effectively, we develop a novel loss function learning strategy in which MMD loss and cross-entropy loss functions are adopted by using different weights according to the progress of each epoch during the learning. The proposed weight adoptation focuses on the training of the source domain in the initial learning phase to learn facial feature information such as eyes, nose, and mouth. After the initial learning is completed, the resulting feature information is used to training a deep network using the target domain images. To evaluate the effectiveness of the proposed method, FR performances were evaluated with pretrained model trained only with CASIA-webface (source images) and fine-tuned model trained only with FERET's gallery (target images) under the same FR scenarios. The experimental results showed that the proposed semi-supervised domain adaptation can be improved by 24.78% compared to the pre-trained model and 28.42% compared to the fine-tuned model. In addition, the proposed method outperformed other state-of-the-arts domain adaptation approaches by 9.41%.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.