• Title/Summary/Keyword: facial feature extraction

Search Result 160, Processing Time 0.027 seconds

Face Recognition Based on Polar Coordinate Transform (극좌표계 변환에 기반한 얼굴 인식 방법)

  • Oh, Jae-Hyun;Kwak, No-Jun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.44-52
    • /
    • 2010
  • In this paper, we propose a novel method for face recognition which uses polar coordinate instead of conventional cartesian coordinate. Among the central area of a face, we select a point as a pole and make a polar image of a face by evenly sampling pixels in each direction of 360 degrees around the pole. By applying conventional feature extraction methods to the polar image, the recognition rates are improved. The polar coordinate delineates near-pole area more vividly than the area far from the pole. In a face, important regions such as eyes, nose and mouth are concentrated on the central part of a face. Therefore, the polar coordinate of a face image can achieve more vivid representation of important facial regions compared to the conventional cartesian coordinate. The proposed polar coordinate transform was applied to Yale and FRGC databases and LDA and NLDA were used to extract features afterwards. The experimental results show that the proposed method performs better than the conventional cartesian images.

Head Pose Estimation Based on Perspective Projection Using PTZ Camera (원근투영법 기반의 PTZ 카메라를 이용한 머리자세 추정)

  • Kim, Jin Suh;Lee, Gyung Ju;Kim, Gye Young
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.7
    • /
    • pp.267-274
    • /
    • 2018
  • This paper describes a head pose estimation method using PTZ(Pan-Tilt-Zoom) camera. When the external parameters of a camera is changed by rotation and translation, the estimated face pose for the same head also varies. In this paper, we propose a new method to estimate the head pose independently on varying the parameters of PTZ camera. The proposed method consists of 3 steps: face detection, feature extraction, and pose estimation. For each step, we respectively use MCT(Modified Census Transform) feature, the facial regression tree method, and the POSIT(Pose from Orthography and Scaling with ITeration) algorithm. The existing POSIT algorithm does not consider the rotation of a camera, but this paper improves the POSIT based on perspective projection in order to estimate the head pose robustly even when the external parameters of a camera are changed. Through experiments, we confirmed that RMSE(Root Mean Square Error) of the proposed method improve $0.6^{\circ}$ less then the conventional method.

Simply Separation of Head and Face Region and Extraction of Facial Features for Image Security (영상보안을 위한 머리와 얼굴의 간단한 영역 분리 및 얼굴 특징 추출)

  • Jeon, Young-Cheol;Lee, Keon-Ik;Kim, Kang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.5
    • /
    • pp.125-133
    • /
    • 2008
  • As society develops, the importance of safety for individuals and facilities in public places is getting higher. Not only the areas such as the existing parking lot, bank and factory which require security or crime prevention but also individual houses as well as general institutions have the trend to increase investment in guard and security. This study suggests face feature extract and the method to simply divide face region and head region that are import for face recognition by using color transform. First of all, it is to divide face region by using color transform of Y image of YIQ image and head image after dividing head region with K image among CMYK image about input image. Then, it is to extract features of face by using labeling after Log calculation to head image. The clearly divided head and face region can easily classify the shape of head and face and simply find features. When the algorism of the suggested method is utilized, it is expected that security related facilities that require importance can use it effectively to guard or recognize people.

  • PDF

Development of Virtual Makeup Tool based on Mobile Augmented Reality

  • Song, Mi-Young;Kim, Young-Sun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.1
    • /
    • pp.127-133
    • /
    • 2021
  • In this study, an augmented reality-based make-up tool was built to analyze the user's face shape based on face-type reference model data and to provide virtual makeup by providing face-type makeup. To analyze the face shape, first recognize the face from the image captured by the camera, then extract the features of the face contour area and use them as analysis properties. Next, the feature points of the extracted face contour area are normalized to compare with the contour area characteristics of each face reference model data. Face shape is predicted and analyzed using the distance difference between the feature points of the normalized contour area and the feature points of the each face-type reference model data. In augmented reality-based virtual makeup, in the image input from the camera, the face is recognized in real time to extract the features of each area of the face. Through the face-type analysis process, you can check the results of virtual makeup by providing makeup that matches the analyzed face shape. Through the proposed system, We expect cosmetics consumers to check the makeup design that suits them and have a convenient and impact on their decision to purchase cosmetics. It will also help you create an attractive self-image by applying facial makeup to your virtual self.

Face Recognition using Modified Local Directional Pattern Image (Modified Local Directional Pattern 영상을 이용한 얼굴인식)

  • Kim, Dong-Ju;Lee, Sang-Heon;Sohn, Myoung-Kyu
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.3
    • /
    • pp.205-208
    • /
    • 2013
  • Generally, binary pattern transforms have been used in the field of the face recognition and facial expression, since they are robust to illumination. Thus, this paper proposes an illumination-robust face recognition system combining an MLDP, which improves the texture component of the LDP, and a 2D-PCA algorithm. Unlike that binary pattern transforms such as LBP and LDP were used to extract histogram features, the proposed method directly uses the MLDP image for feature extraction by 2D-PCA. The performance evaluation of proposed method was carried out using various algorithms such as PCA, 2D-PCA and Gabor wavelets-based LBP on Yale B and CMU-PIE databases which were constructed under varying lighting condition. From the experimental results, we confirmed that the proposed method showed the best recognition accuracy.

Face Tracking Using Face Feature and Color Information (색상과 얼굴 특징 정보를 이용한 얼굴 추적)

  • Lee, Kyong-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.11
    • /
    • pp.167-174
    • /
    • 2013
  • TIn this paper, we find the face in color images and the ability to track the face was implemented. Face tracking is the work to find face regions in the image using the functions of the computer system and this function is a necessary for the robot. But such as extracting skin color in the image face tracking can not be performed. Because face in image varies according to the condition such as light conditions, facial expressions condition. In this paper, we use the skin color pixel extraction function added lighting compensation function and the entire processing system was implemented, include performing finding the features of eyes, nose, mouth are confirmed as face. Lighting compensation function is a adjusted sine function and although the result is not suitable for human vision, the function showed about 4% improvement. Face features are detected by amplifying, reducing the value and make a comparison between the represented image. The eye and nose position, lips are detected. Face tracking efficiency was good.

FRS-OCC: Face Recognition System for Surveillance Based on Occlusion Invariant Technique

  • Abbas, Qaisar
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.288-296
    • /
    • 2021
  • Automated face recognition in a runtime environment is gaining more and more important in the fields of surveillance and urban security. This is a difficult task keeping in mind the constantly volatile image landscape with varying features and attributes. For a system to be beneficial in industrial settings, it is pertinent that its efficiency isn't compromised when running on roads, intersections, and busy streets. However, recognition in such uncontrolled circumstances is a major problem in real-life applications. In this paper, the main problem of face recognition in which full face is not visible (Occlusion). This is a common occurrence as any person can change his features by wearing a scarf, sunglass or by merely growing a mustache or beard. Such types of discrepancies in facial appearance are frequently stumbled upon in an uncontrolled circumstance and possibly will be a reason to the security systems which are based upon face recognition. These types of variations are very common in a real-life environment. It has been analyzed that it has been studied less in literature but now researchers have a major focus on this type of variation. Existing state-of-the-art techniques suffer from several limitations. Most significant amongst them are low level of usability and poor response time in case of any calamity. In this paper, an improved face recognition system is developed to solve the problem of occlusion known as FRS-OCC. To build the FRS-OCC system, the color and texture features are used and then an incremental learning algorithm (Learn++) to select more informative features. Afterward, the trained stack-based autoencoder (SAE) deep learning algorithm is used to recognize a human face. Overall, the FRS-OCC system is used to introduce such algorithms which enhance the response time to guarantee a benchmark quality of service in any situation. To test and evaluate the performance of the proposed FRS-OCC system, the AR face dataset is utilized. On average, the FRS-OCC system is outperformed and achieved SE of 98.82%, SP of 98.49%, AC of 98.76% and AUC of 0.9995 compared to other state-of-the-art methods. The obtained results indicate that the FRS-OCC system can be used in any surveillance application.

Local Prominent Directional Pattern for Gender Recognition of Facial Photographs and Sketches (Local Prominent Directional Pattern을 이용한 얼굴 사진과 스케치 영상 성별인식 방법)

  • Makhmudkhujaev, Farkhod;Chae, Oksam
    • Convergence Security Journal
    • /
    • v.19 no.2
    • /
    • pp.91-104
    • /
    • 2019
  • In this paper, we present a novel local descriptor, Local Prominent Directional Pattern (LPDP), to represent the description of facial images for gender recognition purpose. To achieve a clearly discriminative representation of local shape, presented method encodes a target pixel with the prominent directional variations in local structure from an analysis of statistics encompassed in the histogram of such directional variations. Use of the statistical information comes from the observation that a local neighboring region, having an edge going through it, demonstrate similar gradient directions, and hence, the prominent accumulations, accumulated from such gradient directions provide a solid base to represent the shape of that local structure. Unlike the sole use of gradient direction of a target pixel in existing methods, our coding scheme selects prominent edge directions accumulated from more samples (e.g., surrounding neighboring pixels), which, in turn, minimizes the effect of noise by suppressing the noisy accumulations of single or fewer samples. In this way, the presented encoding strategy provides the more discriminative shape of local structures while ensuring robustness to subtle changes such as local noise. We conduct extensive experiments on gender recognition datasets containing a wide range of challenges such as illumination, expression, age, and pose variations as well as sketch images, and observe the better performance of LPDP descriptor against existing local descriptors.

Recognition method using stereo images-based 3D information for improvement of face recognition (얼굴인식의 향상을 위한 스테레오 영상기반의 3차원 정보를 이용한 인식)

  • Park Chang-Han;Paik Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.3 s.309
    • /
    • pp.30-38
    • /
    • 2006
  • In this paper, we improved to drops recognition rate according to distance using distance and depth information with 3D from stereo face images. A monocular face image has problem to drops recognition rate by uncertainty information such as distance of an object, size, moving, rotation, and depth. Also, if image information was not acquired such as rotation, illumination, and pose change for recognition, it has a very many fault. So, we wish to solve such problem. Proposed method consists of an eyes detection algorithm, analysis a pose of face, md principal component analysis (PCA). We also convert the YCbCr space from the RGB for detect with fast face in a limited region. We create multi-layered relative intensity map in face candidate region and decide whether it is face from facial geometry. It can acquire the depth information of distance, eyes, and mouth in stereo face images. Proposed method detects face according to scale, moving, and rotation by using distance and depth. We train by using PCA the detected left face and estimated direction difference. Simulation results with face recognition rate of 95.83% (100cm) in the front and 98.3% with the pose change were obtained successfully. Therefore, proposed method can be used to obtain high recognition rate with an appropriate scaling and pose change according to the distance.

The Protective Role of Gleditsiae fructus against Streptococcus pneumoniae (폐렴 구균에 대한 조협의 보호 역할 연구)

  • Jun-ki Lee;Se-Hui Lee;Dong Ju Seo;Kang-Hee Lee;Sojung Park;Sun Park;Taekyung Kim;Jin-Young Yang
    • Journal of Life Science
    • /
    • v.33 no.2
    • /
    • pp.158-168
    • /
    • 2023
  • Natural products have been used to mitigate the effects of cancer and infectious diseases, as they feature diverse bioactivities, such as antioxidant, antibacterial, anti-inflammatory, and immunomodulatory effects. Here, we chose 10 natural products that are well-known as pulmonary enhancers and investigated their bactericidal effects on Streptococcus pneumoniae. In the disk diffusion assay, the growth of S. pneumoniae was significantly regulated by G. fructus treatment regardless of extraction method used. We first adopted spraying as a novel delivery method for G. fructus. Interestingly, mice exposed to G. fructus three times a day for 2 weeks were resistant to S. pneumoniae intranasal infection (shown both through body weight loss and survival rates compared to the control group). Moreover, we confirmed that exposure to G. fructus regulated the colonization of the bacteria despite the sustained inflammation in the lung after exposure to S. pneumoniae, indicating that migrated inflammatory immune cells may involve a host defense mechanism against pulmonary infectious diseases. While a similar number of granulocytes (CD11b+Ly6C+Ly6G+), neutrophils (CD11b+Ly6CintLy6G+), and monocytes (CD11b+Ly6CintLy6G-) were found between groups, a significantly increased number of alveolar macrophages (CD11b+CD11chiF4/80+) was detected in BAL fluids of mice pre-exposed to G. fructus at 5 days after S. pneumonia infection. Taken together, our data suggest that this usage of G. fructus can induce protective immunity against bacterial infection, indicating that facial spray may be helpful in enhancing the defense mechanism against pulmonary inflammation and in evaluating the efficacy of natural products as immune enhancers against respiratory diseases.