• 제목/요약/키워드: facial expression recognition

검색결과 284건 처리시간 0.023초

Facial Expression Recognition with Fuzzy C-Means Clusstering Algorithm and Neural Network Based on Gabor Wavelets

  • Youngsuk Shin;Chansup Chung;Lee, Yillbyung
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 2000년도 춘계 학술대회 및 국제 감성공학 심포지움 논문집 Proceeding of the 2000 Spring Conference of KOSES and International Sensibility Ergonomics Symposium
    • /
    • pp.126-132
    • /
    • 2000
  • This paper presents a facial expression recognition based on Gabor wavelets that uses a fuzzy C-means(FCM) clustering algorithm and neural network. Features of facial expressions are extracted to two steps. In the first step, Gabor wavelet representation can provide edges extraction of major face components using the average value of the image's 2-D Gabor wavelet coefficient histogram. In the next step, we extract sparse features of facial expressions from the extracted edge information using FCM clustering algorithm. The result of facial expression recognition is compared with dimensional values of internal stated derived from semantic ratings of words related to emotion. The dimensional model can recognize not only six facial expressions related to Ekman's basic emotions, but also expressions of various internal states.

  • PDF

얼굴 표정인식을 이용한 위험상황 인지 (Facial Expression Algorithm For Risk Situation Recognition)

  • 곽내정;송특섭
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 추계학술대회
    • /
    • pp.197-200
    • /
    • 2014
  • 본 논문은 얼굴의 표정 인식을 이용한 위험상황 인지 알고리즘을 제안한다. 제안방법은 인간의 다양한 감정 표정 중 위험상황을 인지하기 위한 표정인 놀람과 공포의 표정을 인식한다. 제안방법은 먼저 얼굴 영역을 추출하고 검출된 얼굴 영역으로부터 눈 영역과 입술 영역을 추출한다. 각 영역에 Uniform LBP 방법을 적용하여 표정을 판별하고 위험 상황을 인식한다. 제안방법은 Cohn-Kanade 데이터베이스 영상을 대상으로 성능을 평가하였다. 그 결과 표정 인식에 좋은 결과를 보였으며 이를 이용하여 위험상황을 잘 판별하였다.

  • PDF

Emotion Recognition using Facial Thermal Images

  • Eom, Jin-Sup;Sohn, Jin-Hun
    • 대한인간공학회지
    • /
    • 제31권3호
    • /
    • pp.427-435
    • /
    • 2012
  • The aim of this study is to investigate facial temperature changes induced by facial expression and emotional state in order to recognize a persons emotion using facial thermal images. Background: Facial thermal images have two advantages compared to visual images. Firstly, facial temperature measured by thermal camera does not depend on skin color, darkness, and lighting condition. Secondly, facial thermal images are changed not only by facial expression but also emotional state. To our knowledge, there is no study to concurrently investigate these two sources of facial temperature changes. Method: 231 students participated in the experiment. Four kinds of stimuli inducing anger, fear, boredom, and neutral were presented to participants and the facial temperatures were measured by an infrared camera. Each stimulus consisted of baseline and emotion period. Baseline period lasted during 1min and emotion period 1~3min. In the data analysis, the temperature differences between the baseline and emotion state were analyzed. Eyes, mouth, and glabella were selected for facial expression features, and forehead, nose, cheeks were selected for emotional state features. Results: The temperatures of eyes, mouth, glanella, forehead, and nose area were significantly decreased during the emotional experience and the changes were significantly different by the kind of emotion. The result of linear discriminant analysis for emotion recognition showed that the correct classification percentage in four emotions was 62.7% when using both facial expression features and emotional state features. The accuracy was slightly but significantly decreased at 56.7% when using only facial expression features, and the accuracy was 40.2% when using only emotional state features. Conclusion: Facial expression features are essential in emotion recognition, but emotion state features are also important to classify the emotion. Application: The results of this study can be applied to human-computer interaction system in the work places or the automobiles.

얼굴 인식을 통한 동적 감정 분류 (Dynamic Emotion Classification through Facial Recognition)

  • 한우리;이용환;박제호;김영섭
    • 반도체디스플레이기술학회지
    • /
    • 제12권3호
    • /
    • pp.53-57
    • /
    • 2013
  • Human emotions are expressed in various ways. It can be expressed through language, facial expression and gestures. In particular, the facial expression contains many information about human emotion. These vague human emotion appear not in single emotion, but in combination of various emotion. This paper proposes a emotional expression algorithm using Active Appearance Model(AAM) and Fuzz k- Nearest Neighbor which give facial expression in similar with vague human emotion. Applying Mahalanobis distance on the center class, determine inclusion level between center class and each class. Also following inclusion level, appear intensity of emotion. Our emotion recognition system can recognize a complex emotion using Fuzzy k-NN classifier.

Video Expression Recognition Method Based on Spatiotemporal Recurrent Neural Network and Feature Fusion

  • Zhou, Xuan
    • Journal of Information Processing Systems
    • /
    • 제17권2호
    • /
    • pp.337-351
    • /
    • 2021
  • Automatically recognizing facial expressions in video sequences is a challenging task because there is little direct correlation between facial features and subjective emotions in video. To overcome the problem, a video facial expression recognition method using spatiotemporal recurrent neural network and feature fusion is proposed. Firstly, the video is preprocessed. Then, the double-layer cascade structure is used to detect a face in a video image. In addition, two deep convolutional neural networks are used to extract the time-domain and airspace facial features in the video. The spatial convolutional neural network is used to extract the spatial information features from each frame of the static expression images in the video. The temporal convolutional neural network is used to extract the dynamic information features from the optical flow information from multiple frames of expression images in the video. A multiplication fusion is performed with the spatiotemporal features learned by the two deep convolutional neural networks. Finally, the fused features are input to the support vector machine to realize the facial expression classification task. The experimental results on cNTERFACE, RML, and AFEW6.0 datasets show that the recognition rates obtained by the proposed method are as high as 88.67%, 70.32%, and 63.84%, respectively. Comparative experiments show that the proposed method obtains higher recognition accuracy than other recently reported methods.

얼굴 특징 변화에 따른 휴먼 감성 인식 (Human Emotion Recognition based on Variance of Facial Features)

  • 이용환;김영섭
    • 반도체디스플레이기술학회지
    • /
    • 제16권4호
    • /
    • pp.79-85
    • /
    • 2017
  • Understanding of human emotion has a high importance in interaction between human and machine communications systems. The most expressive and valuable way to extract and recognize the human's emotion is by facial expression analysis. This paper presents and implements an automatic extraction and recognition scheme of facial expression and emotion through still image. This method has three main steps to recognize the facial emotion: (1) Detection of facial areas with skin-color method and feature maps, (2) Creation of the Bezier curve on eyemap and mouthmap, and (3) Classification and distinguish the emotion of characteristic with Hausdorff distance. To estimate the performance of the implemented system, we evaluate a success-ratio with emotional face image database, which is commonly used in the field of facial analysis. The experimental result shows average 76.1% of success to classify and distinguish the facial expression and emotion.

  • PDF

A Local Feature-Based Robust Approach for Facial Expression Recognition from Depth Video

  • Uddin, Md. Zia;Kim, Jaehyoun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권3호
    • /
    • pp.1390-1403
    • /
    • 2016
  • Facial expression recognition (FER) plays a very significant role in computer vision, pattern recognition, and image processing applications such as human computer interaction as it provides sufficient information about emotions of people. For video-based facial expression recognition, depth cameras can be better candidates over RGB cameras as a person's face cannot be easily recognized from distance-based depth videos hence depth cameras also resolve some privacy issues that can arise using RGB faces. A good FER system is very much reliant on the extraction of robust features as well as recognition engine. In this work, an efficient novel approach is proposed to recognize some facial expressions from time-sequential depth videos. First of all, efficient Local Binary Pattern (LBP) features are obtained from the time-sequential depth faces that are further classified by Generalized Discriminant Analysis (GDA) to make the features more robust and finally, the LBP-GDA features are fed into Hidden Markov Models (HMMs) to train and recognize different facial expressions successfully. The depth information-based proposed facial expression recognition approach is compared to the conventional approaches such as Principal Component Analysis (PCA), Independent Component Analysis (ICA), and Linear Discriminant Analysis (LDA) where the proposed one outperforms others by obtaining better recognition rates.

Multi-classifier Fusion Based Facial Expression Recognition Approach

  • Jia, Xibin;Zhang, Yanhua;Powers, David;Ali, Humayra Binte
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권1호
    • /
    • pp.196-212
    • /
    • 2014
  • Facial expression recognition is an important part in emotional interaction between human and machine. This paper proposes a facial expression recognition approach based on multi-classifier fusion with stacking algorithm. The kappa-error diagram is employed in base-level classifiers selection, which gains insights about which individual classifier has the better recognition performance and how diverse among them to help improve the recognition accuracy rate by fusing the complementary functions. In order to avoid the influence of the chance factor caused by guessing in algorithm evaluation and get more reliable awareness of algorithm performance, kappa and informedness besides accuracy are utilized as measure criteria in the comparison experiments. To verify the effectiveness of our approach, two public databases are used in the experiments. The experiment results show that compared with individual classifier and two other typical ensemble methods, our proposed stacked ensemble system does recognize facial expression more accurately with less standard deviation. It overcomes the individual classifier's bias and achieves more reliable recognition results.

SIFT 기술자를 이용한 얼굴 표정인식 (Facial Expression Recognition Using SIFT Descriptor)

  • 김동주;이상헌;손명규
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권2호
    • /
    • pp.89-94
    • /
    • 2016
  • 본 논문에서는 SIFT 기술자를 이용한 얼굴 특징과 SVM 분류기로 표정인식을 수행하는 방법에 대하여 제안한다. 기존 SIFT 기술자는 물체 인식 분야에 있어 키포인트 검출 후, 검출된 키포인트에 대한 특징 기술자로써 주로 사용되나, 본 논문에서는 SIFT 기술자를 얼굴 표정인식의 특징벡터로써 적용하였다. 표정인식을 위한 특징은 키포인트 검출 과정 없이 얼굴영상을 서브 블록 영상으로 나누고 각 서브 블록 영상에 SIFT 기술자를 적용하여 계산되며, 표정분류는 SVM 알고리즘으로 수행된다. 성능평가는 기존의 LBP 및 LDP와 같은 이진패턴 특징기반의 표정인식 방법과 비교 수행되었으며, 실험에는 공인 CK 데이터베이스와 JAFFE 데이터베이스를 사용하였다. 실험결과, SIFT 기술자를 이용한 제안방법은 기존방법보다 CK 데이터베이스에서 6.06%의 향상된 인식결과를 보였으며, JAFFE 데이터베이스에서는 3.87%의 성능향상을 보였다.

공포와 놀람 표정인식을 이용한 위험상황 인지 (Risk Situation Recognition Using Facial Expression Recognition of Fear and Surprise Expression)

  • 곽내정;송특섭
    • 한국정보통신학회논문지
    • /
    • 제19권3호
    • /
    • pp.523-528
    • /
    • 2015
  • 본 논문은 얼굴의 표정 인식을 이용한 위험상황 인지 알고리즘을 제안한다. 제안방법은 인간의 다양한 감정 표정 중 위험상황을 인지하기 위한 표정인 놀람과 공포의 표정을 인식한다. 제안방법은 먼저 얼굴 영역을 추출하고 검출된 얼굴 영역으로부터 눈 영역과 입술 영역을 추출한다. 각 영역에 유니폼 LBP 방법을 적용하여 표정을 판별하고 위험 상황을 인식한다. 제안방법은 표정인식을 위해 사용되는 Cohn-Kanade 데이터베이스 영상을 대상으로 성능을 평가하였다. 이 데이터베이스는 사람의 기본표정인 웃는 표정, 슬픈 표정, 놀란 표정, 화난 표정, 역거운 표정, 공포 표정 등 6가지의 표정영상을 포함하고 있다. 그 결과 표정 인식에 좋은 결과를 보였으며 이를 이용하여 위험상황을 잘 판별하였다.