• 제목/요약/키워드: facial expression recognition

검색결과 284건 처리시간 0.025초

딥 러닝 기술 이용한 얼굴 표정 인식에 따른 이모티콘 추출 연구 (A Study on the Emoticon Extraction based on Facial Expression Recognition using Deep Learning Technique)

  • 정봉재;장범
    • 한국인공지능학회지
    • /
    • 제5권2호
    • /
    • pp.43-53
    • /
    • 2017
  • In this paper, the pattern of extracting the same expression is proposed by using the Android intelligent device to identify the facial expression. The understanding and expression of expression are very important to human computer interaction, and the technology to identify human expressions is very popular. Instead of searching for the emoticons that users often use, you can identify facial expressions with acamera, which is a useful technique that can be used now. This thesis puts forward the technology of the third data is available on the website of the set, use the content to improve the infrastructure of the facial expression recognition accuracy, in order to improve the synthesis of neural network algorithm, making the facial expression recognition model, the user's facial expressions and similar e xpressions, reached 66%.It doesn't need to search for emoticons. If you use the camera to recognize the expression, itwill appear emoticons immediately. So this service is the emoticons used when people send messages to others, and it can feel a lot of convenience. In countless emoticons, there is no need to find emoticons, which is an increasing trend in deep learning. So we need to use more suitable algorithm for expression recognition, and then improve accuracy.

A Study on the Facial Expression Recognition using Deep Learning Technique

  • Jeong, Bong Jae;Kang, Min Soo;Jung, Yong Gyu
    • International Journal of Advanced Culture Technology
    • /
    • 제6권1호
    • /
    • pp.60-67
    • /
    • 2018
  • In this paper, the pattern of extracting the same expression is proposed by using the Android intelligent device to identify the facial expression. The understanding and expression of expression are very important to human computer interaction, and the technology to identify human expressions is very popular. Instead of searching for the symbols that users often use, you can identify facial expressions with a camera, which is a useful technique that can be used now. This thesis puts forward the technology of the third data is available on the website of the set, use the content to improve the infrastructure of the facial expression recognition accuracy, to improve the synthesis of neural network algorithm, making the facial expression recognition model, the user's facial expressions and similar expressions, reached 66%. It doesn't need to search for symbols. If you use the camera to recognize the expression, it will appear symbols immediately. So, this service is the symbols used when people send messages to others, and it can feel a lot of convenience. In countless symbols, there is no need to find symbols, which is an increasing trend in deep learning. So, we need to use more suitable algorithm for expression recognition, and then improve accuracy.

Facial Data Visualization for Improved Deep Learning Based Emotion Recognition

  • Lee, Seung Ho
    • Journal of Information Science Theory and Practice
    • /
    • 제7권2호
    • /
    • pp.32-39
    • /
    • 2019
  • A convolutional neural network (CNN) has been widely used in facial expression recognition (FER) because it can automatically learn discriminative appearance features from an expression image. To make full use of its discriminating capability, this paper suggests a simple but effective method for CNN based FER. Specifically, instead of an original expression image that contains facial appearance only, the expression image with facial geometry visualization is used as input to CNN. In this way, geometric and appearance features could be simultaneously learned, making CNN more discriminative for FER. A simple CNN extension is also presented in this paper, aiming to utilize geometric expression change derived from an expression image sequence. Experimental results on two public datasets (CK+ and MMI) show that CNN using facial geometry visualization clearly outperforms the conventional CNN using facial appearance only.

The Facial Expression Recognition using the Inclined Face Geometrical information

  • Zhao, Dadong;Deng, Lunman;Song, Jeong-Young
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2012년도 추계학술대회
    • /
    • pp.881-886
    • /
    • 2012
  • The paper is facial expression recognition based on the inclined face geometrical information. In facial expression recognition, mouth has a key role in expressing emotions, in this paper the features is mainly based on the shapes of mouth, followed by eyes and eyebrows. This paper makes its efforts to disperse every feature values via the weighting function and proposes method of expression classification with excellent classification effects; the final recognition model has been constructed.

  • PDF

얼굴 표정인식을 위한 2D-DCT 특징추출 방법 (Feature Extraction Method of 2D-DCT for Facial Expression Recognition)

  • 김동주;이상헌;손명규
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권3호
    • /
    • pp.135-138
    • /
    • 2014
  • 본 논문에서는 2D-DCT와 EHMM 알고리즘을 이용하여 과적합에 강인한 얼굴 표정인식 방법을 고안하였다. 특히, 본 논문에서는 2D-DCT 특징추출을 위한 윈도우 크기를 크게 설정하여 EHMM의 관측벡터를 추출함으로써, 표정인식 성능 향상을 도모하였다. 제안 방법의 성능평가는 공인 CK 데이터베이스와 JAFFE 데이터베이스를 이용하여 수행되었고, 실험 결과로부터 특징추출 윈도우의 크기가 커질수록 표정 인식률이 향상됨을 확인하였다. 또한, CK 데이터베이스를 이용하여 표정 모델을 생성하고 JAFFE 데이터베이스 전체 샘플을 테스트한 결과, 제안 방법은 87.79%의 높은 인식률을 보였으며, 기존의 히스토그램 특징 기반의 표정인식 접근법보다 46.01~50.05%의 향상된 인식률을 보였다.

표정 정규화를 통한 얼굴 인식율 개선 (Improvement of Face Recognition Rate by Normalization of Facial Expression)

  • 김진옥
    • 정보처리학회논문지B
    • /
    • 제15B권5호
    • /
    • pp.477-486
    • /
    • 2008
  • 얼굴의 기하학적 특징이 변하여 생기는 표정은 얼굴 인식 시스템의 인식 결과에 다양한 영향을 끼친다. 얼굴 인식율을 개선하기 위해 본 연구에서는 인식 대상 얼굴과 참조 얼굴 사이의 표정 차이를 줄이는 방법으로 얼굴 표정 정규화를 제안한다. 본 연구에서는 대형의 이미지 데이터베이스를 구축하지 않고도 한 개의 정지 이미지에 일반적인 얼굴 근육 모델을 이용하는 접근 방식을 제시하여 얼굴 표정 모델링과 정규화를 처리한다. 첫 번째 방식은 본능적으로 변하는 얼굴 표정의 생물학적 모델을 구축하기 위해 선형 근육 모델의 기하학적 계수를 예측하는 것이다. 두 번째 방식은 RBF(Radial Basis Function)기반의 보간과 와핑을 통해 주어진 표정에 따라 얼굴 근육 모델을 무표정한 얼굴로 정규화한 것이다. 실험 결과, 기저얼굴 방식, 지역 이진 패턴 방식, 회색조 상관측정 방식과 같은 얼굴 인식 과정의 전처리 단계로 본 연구의 표정 정규화 과정을 적용하면 정규화를 거치지 않은 것보다 더 높은 인식율을 보인다.

Facial Expression Recognition Method Based on Residual Masking Reconstruction Network

  • Jianing Shen;Hongmei Li
    • Journal of Information Processing Systems
    • /
    • 제19권3호
    • /
    • pp.323-333
    • /
    • 2023
  • Facial expression recognition can aid in the development of fatigue driving detection, teaching quality evaluation, and other fields. In this study, a facial expression recognition method was proposed with a residual masking reconstruction network as its backbone to achieve more efficient expression recognition and classification. The residual layer was used to acquire and capture the information features of the input image, and the masking layer was used for the weight coefficients corresponding to different information features to achieve accurate and effective image analysis for images of different sizes. To further improve the performance of expression analysis, the loss function of the model is optimized from two aspects, feature dimension and data dimension, to enhance the accurate mapping relationship between facial features and emotional labels. The simulation results show that the ROC of the proposed method was maintained above 0.9995, which can accurately distinguish different expressions. The precision was 75.98%, indicating excellent performance of the facial expression recognition model.

Fear and Surprise Facial Recognition Algorithm for Dangerous Situation Recognition

  • Kwak, NaeJoung;Ryu, SungPil;Hwang, IlYoung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제7권2호
    • /
    • pp.51-55
    • /
    • 2015
  • This paper proposes an algorithm for risk situation recognition using facial expression. The proposed method recognitions the surprise and fear expression among human's various emotional expression for recognizing dangerous situation. The proposed method firstly extracts the facial region using Harr-like technique from input, detects eye region and lip region from the extracted face. And then, the method applies Uniform LBP to each region, detects facial expression, and recognizes dangerous situation. The proposed method is evaluated for MUCT database image and web cam input. The proposed method produces good results of facial expression and discriminates dangerous situation well and the average recognition rate is 91.05%.

Region-Based Facial Expression Recognition in Still Images

  • Nagi, Gawed M.;Rahmat, Rahmita O.K.;Khalid, Fatimah;Taufik, Muhamad
    • Journal of Information Processing Systems
    • /
    • 제9권1호
    • /
    • pp.173-188
    • /
    • 2013
  • In Facial Expression Recognition Systems (FERS), only particular regions of the face are utilized for discrimination. The areas of the eyes, eyebrows, nose, and mouth are the most important features in any FERS. Applying facial features descriptors such as the local binary pattern (LBP) on such areas results in an effective and efficient FERS. In this paper, we propose an automatic facial expression recognition system. Unlike other systems, it detects and extracts the informative and discriminant regions of the face (i.e., eyes, nose, and mouth areas) using Haar-feature based cascade classifiers and these region-based features are stored into separate image files as a preprocessing step. Then, LBP is applied to these image files for facial texture representation and a feature-vector per subject is obtained by concatenating the resulting LBP histograms of the decomposed region-based features. The one-vs.-rest SVM, which is a popular multi-classification method, is employed with the Radial Basis Function (RBF) for facial expression classification. Experimental results show that this approach yields good performance for both frontal and near-frontal facial images in terms of accuracy and time complexity. Cohn-Kanade and JAFFE, which are benchmark facial expression datasets, are used to evaluate this approach.

적응형 결정 트리를 이용한 국소 특징 기반 표정 인식 (Local Feature Based Facial Expression Recognition Using Adaptive Decision Tree)

  • 오지훈;반유석;이인재;안충현;이상윤
    • 한국통신학회논문지
    • /
    • 제39A권2호
    • /
    • pp.92-99
    • /
    • 2014
  • 본 논문은 결정 트리(Decision tree) 구조를 기반으로 한 표정 인식 방법을 제안한다. ASM(Active Shape Model)과 LBP(Local Binary Pattern)를 통해, 표정 영상들의 국소 특징들을 추출한다. 국소 특징들로부터 표정들을 잘 분류할 수 있는 판별 특징(Discriminant feature)들을 추출하고, 그 판별 특징들은 모든 조합의 각 두 가지 표정들을 분류시킨다. 분류를 통해 얻어진 정인식의 합을 통해, 정인식 최대화 기반 국소 영역과 표정 조합을 결정한다. 이 가지 분류들을 종합하여, 결정 트리를 생성한다. 이 결정 트리 기반 표정 인식률은 약 84.7%로, 결정 트리를 고려하지 않은 방법보다, 더 좋은 인식 성능을 보였다.