• 제목/요약/키워드: facial expression recognition

검색결과 284건 처리시간 0.023초

앙상블 학습 알고리즘과 인공지능 표정 인식 기술을 활용한 사용자 감정 맞춤 힐링 서비스 (Using Ensemble Learning Algorithm and AI Facial Expression Recognition, Healing Service Tailored to User's Emotion)

  • 양성연;홍다혜;문재현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.818-820
    • /
    • 2022
  • The keyword 'healing' is essential to the competitive society and culture of Koreans. In addition, as the time at home increases due to COVID-19, the demand for indoor healing services has increased. Therefore, this thesis analyzes the user's facial expression so that people can receive various 'customized' healing services indoors, and based on this, provides lighting, ASMR, video recommendation service, and facial expression recording service.The user's expression was analyzed by applying the ensemble algorithm to the expression prediction results of various CNN models after extracting only the face through object detection from the image taken by the user.

얼굴 표정 인식 기반 컨텐츠 선호도 추론 시스템 (Facial expression recognition-based contents preference inference system)

  • 이연곤;조덕현;장준익;서일홍
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2013년도 제47차 동계학술대회논문집 21권1호
    • /
    • pp.201-204
    • /
    • 2013
  • 디지털 컨텐츠의 종류와 양이 폭발적으로 증가하면서 컨텐츠 선호도 투표는 강한 파급력을 지니게 되었다. 하지만 컨텐츠 소비자가 직접 투표를 해야 하는 현재의 방법은 사람들의 투표 참여율이 저조하며, 조작 위험성이 높다는 문제점이 있다. 이에 본 논문에서는 컨텐츠 소비자의 얼굴 표정에 드러나는 감정을 인식함으로써 자동으로 컨텐츠 선호도를 추론하는 시스템을 제안한다. 본 논문에서 제안하는 시스템은 기존의 수동 컨텐츠 선호도 투표 시스템의 문제점인 컨텐츠 소비자의 부담감과 번거로움, 조작 위험성 등을 해소함으로써 보다 편리하고 효율적이며 신뢰도 높은 서비스를 제공하는 것을 목표로 한다. 따라서 본 논문에서는 컨텐츠 선호도 추론 시스템을 구축하기 위한 방법을 구체적으로 제안하고, 실험을 통하여 제안하는 시스템의 실용성과 효율성을 보인다.

  • PDF

딥러닝 기반의 얼굴영상에서 표정 검출에 관한 연구 (Detection of Face Expression Based on Deep Learning)

  • 원철호;이법기
    • 한국멀티미디어학회논문지
    • /
    • 제21권8호
    • /
    • pp.917-924
    • /
    • 2018
  • Recently, researches using LBP and SVM have been performed as one of the image - based methods for facial emotion recognition. LBP, introduced by Ojala et al., is widely used in the field of image recognition due to its high discrimination of objects, robustness to illumination change, and simple operation. In addition, CS(Center-Symmetric)-LBP was used as a modified form of LBP, which is widely used for face recognition. In this paper, we propose a method to detect four facial expressions such as expressionless, happiness, surprise, and anger using deep neural network. The validity of the proposed method is verified using accuracy. Based on the existing LBP feature parameters, it was confirmed that the method using the deep neural network is superior to the method using the Adaboost and SVM classifier.

Discriminative Effects of Social Skills Training on Facial Emotion Recognition among Children with Attention-Deficit/Hyperactivity Disorder and Autism Spectrum Disorder

  • Lee, Ji-Seon;Kang, Na-Ri;Kim, Hui-Jeong;Kwak, Young-Sook
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • 제29권4호
    • /
    • pp.150-160
    • /
    • 2018
  • Objectives: This study investigated the effect of social skills training (SST) on facial emotion recognition and discrimination in children with attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). Methods: Twenty-three children aged 7 to 10 years participated in our SST. They included 15 children diagnosed with ADHD and 8 with ASD. The participants' parents completed the Korean version of the Child Behavior Checklist (K-CBCL), the ADHD Rating Scale, and Conner's Scale at baseline and post-treatment. The participants completed the Korean Wechsler Intelligence Scale for Children-IV (K-WISC-IV) and the Advanced Test of Attention at baseline and the Penn Emotion Recognition and Discrimination Task at baseline and post-treatment. Results: No significant changes in facial emotion recognition and discrimination occurred in either group before and after SST. However, when controlling for the processing speed of K-WISC and the social subscale of K-CBCL, the ADHD group showed more improvement in total (p=0.049), female (p=0.039), sad (p=0.002), mild (p=0.015), female extreme (p=0.005), male mild (p=0.038), and Caucasian (p=0.004) facial expressions than did the ASD group. Conclusion: SST improved facial expression recognition for children with ADHD more effectively than it did for children with ASD, in whom additional training to help emotion recognition and discrimination is needed.

복잡한 배경의 칼라영상에서 Face and Facial Features 검출 (Detection of Face and Facial Features in Complex Background from Color Images)

  • 김영구;노진우;고한석
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(4)
    • /
    • pp.69-72
    • /
    • 2002
  • Human face detection has many applications such as face recognition, face or facial feature tracking, pose estimation, and expression recognition. We present a new method for automatically segmentation and face detection in color images. Skin color alone is usually not sufficient to detect face, so we combine the color segmentation and shape analysis. The algorithm consists of two stages. First, skin color regions are segmented based on the chrominance component of the input image. Then regions with elliptical shape are selected as face hypotheses. They are certificated to searching for the facial features in their interior, Experimental results demonstrate successful detection over a wide variety of facial variations in scale, rotation, pose, lighting conditions.

  • PDF

Transfer Learning for Face Emotions Recognition in Different Crowd Density Situations

  • Amirah Alharbi
    • International Journal of Computer Science & Network Security
    • /
    • 제24권4호
    • /
    • pp.26-34
    • /
    • 2024
  • Most human emotions are conveyed through facial expressions, which represent the predominant source of emotional data. This research investigates the impact of crowds on human emotions by analysing facial expressions. It examines how crowd behaviour, face recognition technology, and deep learning algorithms contribute to understanding the emotional change according to different level of crowd. The study identifies common emotions expressed during congestion, differences between crowded and less crowded areas, changes in facial expressions over time. The findings can inform urban planning and crowd event management by providing insights for developing coping mechanisms for affected individuals. However, limitations and challenges in using reliable facial expression analysis are also discussed, including age and context-related differences.

얼굴에서 거리 측정에 의한 노래 플레이어 (Song Player by Distance Measurement from Face)

  • 신성윤;이민혜;신광성;이현창
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.667-669
    • /
    • 2022
  • 본 논문에서는 개인의 표정을 인식하여 그에 맞는 음악을 연주하는 시스템인 Face Song Player를 제시한다. 얼굴 윤곽선에 대한 정보를 연구하고 평균을 추출하여 얼굴형 정보를 획득한다. 학습용 DB는 MUCT DB를 사용하였다. 표정 인식을 위해 무표정 영상을 기반으로 각 표정의 특성 차이를 이용하여 알고리즘을 설계하였다.

  • PDF

Advanced AAM 기반 정서특징 검출 기법 개발 (Development of Emotional Feature Extraction Method based on Advanced AAM)

  • 고광은;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제19권6호
    • /
    • pp.834-839
    • /
    • 2009
  • 지능로봇시스템과 같은 HCI 환경에서 사람의 감정을 인식하기 위한 매개정보인 얼굴영상 기반 정서특징 검출문제는 관련분야의 매우 중요한 이슈이다. 본 논문에서는 보편화된 시스템 기반에서 임의의 사용자에 대한 정서 인식을 수행하기 위해 사람의 얼굴에서 나타나는 최적의 정서특징을 가장 효율적으로 추출하기 위한 연구로서 본 연구실에서 기존에 제안한 FACS와 AAM을 이용한 Bayesian Network 기반 얼굴표정 인식 시스템을 보완한 Advanced AAM을 기반 얼굴영상 정서 특징을 검출 시스템에 대한 연구를 진행하였다. 이를 수행하기 위하여 정규화된 이미지에서의 Statistical Shape Analysis로서 Advanced AAM과 얼굴 표정 분석 시스템인 FACS를 이용하여, 임의의 사용자에 대한 자동적인 정서특징 검출이 가능하도록 연구를 진행하였다.

PCA와 템플릿 정합을 사용한 눈 및 입 영상 기반 얼굴 표정 인식 (Eye and Mouth Images Based Facial Expressions Recognition Using PCA and Template Matching)

  • 우효정;이슬기;김동우;유성필;안재형
    • 한국콘텐츠학회논문지
    • /
    • 제14권11호
    • /
    • pp.7-15
    • /
    • 2014
  • 본 연구는 PCA와 템플릿 정합을 사용한 얼굴 표정 인식 알고리즘을 제안한다. 먼저 얼굴 영상은 Haar-like feature의 특징 마스크를 사용하여 획득한다. 획득한 얼굴 영상은 눈과 눈썹을 포함하고 있는 얼굴 상위 부분과 입과 턱을 포함하고 있는 얼굴 하위 부분으로 분리하여 얼굴 요소 추출에 용이하게 나눈다. 얼굴 요소 추출은 눈 영상과 입 영상을 추출하는 과정으로 먼저 학습영상으로 PCA를 거쳐 생성된 고유얼굴을 구한다. 고유 얼굴에서 고유 입과 고유 눈을 획득하고, 이를 얼굴 분리 영상과 템플릿 매칭시켜 얼굴요소를 추출한다. 얼굴 요소는 눈과 입이 있으며 두 요소의 기하학적 특징으로 표정을 인식한다. 컴퓨터 모의실험 결과에 따르면 제안한 방법이 기존의 방법보다 추출률이 우수하게 나왔으며, 특히 입 요소의 추출률은 99%에 달하였다. 또 이 얼굴 요소 추출 방법을 표정인식에 적용하였을 때 놀람, 화남, 행복의 3가지 표정의 인식률이 80%를 상회하였다.