This paper describes methodology that enables animators to create the facial expression animations and to control the facial expressions in real-time by reusing motion capture datas. In order to achieve this, we fix a facial expression state expression method to express facial states based on facial motion data. In addition, by distributing facial expressions into intuitive space using LLE algorithm, it is possible to create the animations or to control the expressions in real-time from facial expression space using user interface. In this paper, approximately 2400 facial expression frames are used to generate facial expression space. In addition, by navigating facial expression space projected on the 2-dimensional plane, it is possible to create the animations or to control the expressions of 3-dimensional avatars in real-time by selecting a series of expressions from facial expression space. In order to distribute approximately 2400 facial expression data into intuitional space, there is need to represents the state of each expressions from facial expression frames. In order to achieve this, the distance matrix that presents the distances between pairs of feature points on the faces, is used. In order to distribute this datas, LLE algorithm is used for visualization in 2-dimensional plane. Animators are told to control facial expressions or to create animations when using the user interface of this system. This paper evaluates the results of the experiment.
This paper describes how to distribute high multi-dimensional facial expression data of vast quantity over a suitable space and produce facial expression animations by selecting expressions while animator navigates this space in real-time. We have constructed facial spaces by using about 2400 facial expression frames on this paper. These facial spaces are created by calculating of the shortest distance between two random expressions. The distance between two points In the space of expression, which is manifold space, is described approximately as following; When the linear distance of them is shorter than a decided value, if the two expressions are adjacent after defining the expression state vector of facial status using distance matrix expressing distance between two markers, this will be considered as the shortest distance (manifold distance) of the two expressions. Once the distance of those adjacent expressions was decided, We have taken a Floyd algorithm connecting these adjacent distances to yield the shortest distance of the two expressions. We have used CCA(Curvilinear Component Analysis) technique to visualize multi-dimensional spaces, the form of expressing space, into two dimensions. While the animators navigate this two dimensional spaces, they produce a facial animation by using user interface in real-time.
International journal of advanced smart convergence
/
v.13
no.3
/
pp.176-182
/
2024
Looking at the recent game market, classic games released in the past are being re-released with high-quality visuals, and users are generally satisfied. It can be said that the realization of realistic digital actors, which was not possible in the past, is now becoming a reality. Epic Games launched the MetaHuman Creator website in September 2021, allowing anyone to easily create realistic human characters. Since then, the number of animations created using MetaHumans has been increasing. As the characters become more realistic, the movement and expression animations expected by the audience must also be convincingly realized. Until recently, traditional methods were the primary approach for producing realistic character animations. For facial animation, Epic Games introduced an improved method on the Live Link app in 2023, which provides the highest quality among mobile-based techniques. In this context, this paper compares the results of animation produced using both keyframe facial capture and mobile-based capture. After creating an emotional expression animation with four sentences, the results were compared using Unreal Engine. While the facial capture method is more natural and easier to use, the precise and exaggerated expressions possible with the keyframe method cannot be overlooked, suggesting that a hybrid approach using both methods will likely continue for the foreseeable future.
This paper presents a facial animation and expression control method that enables the animator to select any facial frames from the facial expression space, whose expression transfer paths the system can setup automatically. Our system creates the facial expression space from approximately 2500 captured facial frames. To create the facial expression space, we get distance between pairs of feature points on the face and visualize the space of expressions in 2D space by using the Multidimensional scaling(MDS). To setup most suitable expression transfer paths, we classify the facial expression space into four field on the basis of any facial expression state. And the system determine the state of expression in the shortest distance from every field, then the system transfer from the state of any expression to the nearest state of expression among thats. To complete setup, our system continue transfer by find second, third, or fourth near state of expression until finish. If the animator selects any key frames from facial expression space, our system setup expression transfer paths automatically. We let animators use the system to create example animations or to control facial expression, and evaluate the system based on the results.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
1999.06a
/
pp.133-140
/
1999
In this paper, we propose a method of image-based three-dimensional modeling for realistic facial expression. In the proposed method, real human facial images are used to deform a generic three-dimensional mesh model and the deformed model is animated to generate facial expression animation. First, we take several pictures of the same person from several view angles. Then we project a three-dimensional face model onto the plane of each facial image and match the projected model with each image. The results are combined to generate a deformed three-dimensional model. We use the feature-based image metamorphosis to match the projected models with images. We then create a synthetic image from the two-dimensional images of a specific person's face. This synthetic image is texture-mapped to the cylindrical projection of the three-dimensional model. We also propose a muscle-based animation technique to generate realistic facial expression animations. This method facilitates the control of the animation. lastly, we show the animation results of the six represenative facial expressions.
This paper introduces that SSFE(Skeleton System for Facial Expression) to deform facial expressions by rigging of skeletons does same functions with 14 facial muscles based on anatomy. A three dimensional animation tool (MAYA 8.5) is utilized for making the SSFE that presents deformation of mesh models implementing facial expressions around eyes, nose and mouse. The SSFE has a good reusability within diverse human mesh models. The reusability of SSFE can be understood as OSMU(One Source Multi Use) of three dimensional animation production method. It can be a good alternative technique for reducing production budget of animations. It can also be used for three dimensional animation industries such as virtual reality and game.
With the success of the world's first 3D computer animated film, "Toy Story" in 1995, industrial development of 3D computer animation gained considerable momentum. Consequently, various 3D animations for TV were produced; in addition, high quality 3D computer animation games became common. To save a large amount of 3D animation production time and cost, technological development has been conducted actively, in accordance with the expansion of industrial demand in this field. Further, compared with the traditional approach of producing animations through hand-drawings, the efficiency of producing 3D computer animations is infinitely greater. In this study, an experiment and a comparative analysis of markerless motion capture systems for facial expression animation has been conducted that aims to improve the efficiency of 3D computer animation production. Faceware system, which is a product of Image Metrics, provides sophisticated production tools despite the complexity of motion capture recognition and application process. Faceshift system, which is a product of same-named Faceshift, though relatively less sophisticated, provides applications for rapid real-time motion recognition. It is hoped that the results of the comparative analysis presented in this paper become baseline data for selecting the appropriate motion capture and key frame animation method for the most efficient production of facial expression animation in accordance with production time and cost, and the degree of sophistication and media in use, when creating animation.
Facial expression is an important means of representing characteristics in movies and animations, and facial capture technology can support the production of facial animation for 3D characters more quickly and effectively. Blendshape techniques are the most widely used methods for producing high-quality 3D face animations, but traditional blendshape often takes a long time to produce. Therefore, the purpose of this study is to achieve results that are not far behind the effectiveness of traditional production to reduce the production period of blend shape. In this paper, in order to make a blend shape, the method of using the cross-model to convey the blend shape is compared with the traditional method of making the blend shape, and the validity of the new method is verified. This study used kit boy developed by Unreal Engine as an experiment target conducted a facial capture test using two blend shape production techniques, and compared and analyzed the facial effects linked to blend shape.
The talking head (TH) indicates an utterance face animation generated based on text and voice input. In this paper, we propose the generation method of TH with facial expression and intonation by speech input only. The problem of generating TH from speech can be regarded as a regression problem from the acoustic feature sequence to the facial code sequence which is a low dimensional vector representation that can efficiently encode and decode a face image. This regression was modeled by bidirectional RNN and trained by using SAVEE database of the front utterance face animation database as training data. The proposed method is able to generate TH with facial expression and intonation TH by using acoustic features such as MFCC, dynamic elements of MFCC, energy, and F0. According to the experiments, the configuration of the BLSTM layer of the first and second layers of bidirectional RNN was able to predict the face code best. For the evaluation, a questionnaire survey was conducted for 62 persons who watched TH animations, generated by the proposed method and the previous method. As a result, 77% of the respondents answered that the proposed method generated TH, which matches well with the speech.
According to traditional 2D animation techniques, anticipation makes an animation much convincing and expressive. We present an automatic method for inserting anticipation effects to an existing facial animation. Our approach assumes that an anticipatory facial expression can be found within an existing facial animation if it is long enough. Vertices of the face model are classified into a set of components using principal components analysis directly from a given hey-framed and/or motion -captured facial animation data. The vortices in a single component will have similar directions of motion in the animation. For each component, the animation is examined to find an anticipation effect for the given facial expression. One of those anticipation effects is selected as the best anticipation effect, which preserves the topology of the face model. The best anticipation effect is automatically blended with the original facial animation while preserving the continuity and the entire duration of the animation. We show experimental results for given motion-captured and key-framed facial animations. This paper deals with a part of broad subject an application of the principles of traditional 2D animation techniques to 3D animation. We show how to incorporate anticipation into 3D facial animation. Animators can produce 3D facial animation with anticipation simply by selecting the facial expression in the animation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.