• 제목/요약/키워드: face search

검색결과 211건 처리시간 0.031초

외식업체 검색사이트에 대한 인식과 이용실태조사 (A Research on Actual State and Awareness for Restaurant Searching Website)

  • 진양호;전진화;정소윤
    • 한국조리학회지
    • /
    • 제9권3호
    • /
    • pp.155-168
    • /
    • 2003
  • As people's interest about food service rises, curiosity about correct foodservice company's information is rising on own inclination and necessity than usual foodservice company. Full text search site that do to foodservice company hereupon is operated, it is becoming menu that do not fall in name of ' Eumsikjeomchatgi ' in a representative search site such as Yahoo, Empas, Hanmir and so on. But, is not beam margin battle array that these search engines find data that they want being applied perfectly in site FACE that is use up to now. Also, is looked that there is problem about practical use service and search. Because search effect of site by that investigate consumers' awareness and practical use turkey for foodservice company search site and diagnose present level, it is thing to grope improvement. This research may supply one suggestion point establishing by more effective marketing communication strategy through internet hereafter.

  • PDF

Masked Face Recognition via a Combined SIFT and DLBP Features Trained in CNN Model

  • Aljarallah, Nahla Fahad;Uliyan, Diaa Mohammed
    • International Journal of Computer Science & Network Security
    • /
    • 제22권6호
    • /
    • pp.319-331
    • /
    • 2022
  • The latest global COVID-19 pandemic has made the use of facial masks an important aspect of our lives. People are advised to cover their faces in public spaces to discourage illness from spreading. Using these face masks posed a significant concern about the exactness of the face identification method used to search and unlock telephones at the school/office. Many companies have already built the requisite data in-house to incorporate such a scheme, using face recognition as an authentication. Unfortunately, veiled faces hinder the detection and acknowledgment of these facial identity schemes and seek to invalidate the internal data collection. Biometric systems that use the face as authentication cause problems with detection or recognition (face or persons). In this research, a novel model has been developed to detect and recognize faces and persons for authentication using scale invariant features (SIFT) for the whole segmented face with an efficient local binary texture features (DLBP) in region of eyes in the masked face. The Fuzzy C means is utilized to segment the image. These mixed features are trained significantly in a convolution neural network (CNN) model. The main advantage of this model is that can detect and recognizing faces by assigning weights to the selected features aimed to grant or provoke permissions with high accuracy.

학습기반 효율적인 얼굴 검출 시스템 설계 (Design of an efficient learning-based face detection system)

  • 김현식;김완태;박병준
    • 디지털산업정보학회논문지
    • /
    • 제19권3호
    • /
    • pp.213-220
    • /
    • 2023
  • Face recognition is a very important process in video monitoring and is a type of biometric technology. It is mainly used for identification and security purposes, such as ID cards, licenses, and passports. The recognition process has many variables and is complex, so development has been slow. In this paper, we proposed a face recognition method using CNN, which has been re-examined due to the recent development of computers and algorithms, and compared with the feature comparison method, which is an existing face recognition algorithm, to verify performance. The proposed face search method is divided into a face region extraction step and a learning step. For learning, face images were standardized to 50×50 pixels, and learning was conducted while minimizing unnecessary nodes. In this paper, convolution and polling-based techniques, which are one of the deep learning technologies, were used for learning, and 1,000 face images were randomly selected from among 7,000 images of Caltech, and as a result of inspection, the final recognition rate was 98%.

오류-역전파 신경망 기반의 얼굴 검출 및 포즈 추정 (Back-Propagation Neural Network Based Face Detection and Pose Estimation)

  • 이재훈;전인자;이정훈;이필규
    • 정보처리학회논문지B
    • /
    • 제9B권6호
    • /
    • pp.853-862
    • /
    • 2002
  • 얼굴 검출은 디지털화 된 임의의 정지 영상 혹은 연속된 영상으로부터 얼굴 존재유무를 판단하고, 얼굴이 존재할 경우 영상 내 얼굴의 위치, 방향, 크기 등을 알아내는 기술로 정의된다. 이러한 얼굴 검출은 얼굴 인식이나 표정인식, 헤드 제스쳐 등의 기초 기술로서해당 시스템의 성능에 매우 중요한 변수 중에 하나이다. 그러나 영상 내의 얼굴은 표정, 포즈, 크기, 빛의 방향 및 밝기, 안경, 수염 등의 환경적 변화로 인해 얼굴 모양이 다양해지므로 정확하고 빠른 검출이 어렵다. 따라서 본 논문에서는 오류-역전파 신경망을 사용하여 몇가지 환경적 조건을 극복한 정확하고 빠른 얼굴 검출 방법을 제안한다. 제안된 방법은 표정과 포즈, 배경에 무관하게 얼굴을 검출하면서도 빠른 검출이 가능하다. 이를 위해 신경망을 이용하여 얼굴 검출을 수행하고, 검색 영역의 축소와 신경망 계산 시간의 단축으로 검출 응답 시간을 빠르게 하였다. 검색 영역의 축소는 영상 내 피부색 영역의 분할과 차영상을 이용하였고, 주성분 분석을 통해 신경망의 입력 백터를 축소시킴으로써 신경망 수행 시간과 학습 시간을 단축시켰다. 또, 추출된 얼굴 영상에서 포즈를 추정하고 눈 영역을 검출함으로써 얼굴 정보의 사용에 있어 보다 많은 정보를 추출할 수 있도록 하였다. 얼굴 검출 실험은 마할라노비스 거리를 사용하여 검출된 영상의 얼굴 여부를 판정하고, 성공률과 시간을 측정하였다. 정지 영상과 동영상에서 모두 실험하였으며, 피부색 영역의 분할을 사용할 경우 입력 영상의 칼라 설정의 유무에 다른 검출 성공률의 차를 보였다. 포즈 실험도 같은 조건에서 수행되었으며, 눈 영역의 검출은 안경의 유무에 다른 실험 결과를 보였다. 실험 결과 실시간 시스템에 사용 가능한 수준의 검색률과 검색 시간을 보였다.

신경망 기반 눈 영역 추정에 의한 실시간 얼굴 검출 기법 (Real-Time Face Detection by Estimating the Eye Region Using Neural Network)

  • 김주섭;김재희
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(4)
    • /
    • pp.21-24
    • /
    • 2001
  • In this paper, we present a fast face detection algorithm by estimating the eye region using neural network. To implement a real time face detection system, it is necessary to reduce search space. We limit the search space just to a few pairs of eye candidates. For the selection of them, we first isolate possible eye regions in the fast and robust way by modified histogram equalization. The eye candidates are paired to form an eye pair and each of the eye pair is estimated how close it is to a true eye pair in two aspects : One is how similar the two eye candidates are in shape and the other is how close each of them is to a true eye image A multi-layer perceptron neural network is used to find the eye candidate region's closeness to the true eye image. Just a few best candidates are then verified by eigenfaces. The experimental results show that this approach is fast and reliable. We achieved 94% detection rate with average 0.1 sec Processing time in Pentium III PC in the experiment on 424 gray scale images from MIT, Yale, and Yonsei databases.

  • PDF

HEEAS: 감정표현 애니메이션 알고리즘과 구현에 관한 연구 (HEEAS: On the Implementation and an Animation Algorithm of an Emotional Expression)

  • 김상길;민용식
    • 한국콘텐츠학회논문지
    • /
    • 제6권3호
    • /
    • pp.125-134
    • /
    • 2006
  • 본 논문은 음성이 인간에게 전달되어 나타나는 여러 가지 감정 표현 중에서 단지 4가지 감정 즉 두려움, 싫증, 놀람 그리고 중성에 대한 감정 표현이 얼굴과 몸동작에 동시에 나타내는 애니메이션 시스템인 HEEAS(Human Emotional Expression Animation System)를 구현하는데 그 주된 목적이 있다. 이를 위해서 본 논문에서는 감정 표현이 풍부한 한국인 20대 청년을 모델로 설정하였다. 또한 입력되어진 음성 신호를 통해서 추출된 감정표현에 대한 데이터를 얼굴코드와 몸동작코드를 부여하고 이를 데이터 베이스화 하여 실제 애니메이션 구현을 하기 위한 처리의 시간을 최소화하였다. 즉, 입력되어진 음성 신호를 이용해서 원하는 결과인 얼굴, 몸동작에 대한 자료를 이진 검색을 이용해서 데이터베이스에서 찾으므로 검색 시간을 최소화하였다. 실제 감정 표현에 대한문제들을 실험을 통해서 얻은 결과가 99.9%의 정확도임을 알 수가 있었다.

  • PDF

미디어 편집을 위한 인물 식별 및 검색 기법 (Character Recognition and Search for Media Editing)

  • 박용석;김현식
    • 방송공학회논문지
    • /
    • 제27권4호
    • /
    • pp.519-526
    • /
    • 2022
  • 동영상 콘텐츠 편집 시 등장인물을 구분하고 식별하는 작업은 많은 시간과 노력이 요구되는 작업이다. 노동 집약적 특성이 있는 미디어 편집 작업 시 인공지능 기술을 활용하면 미디어 제작 시간을 획기적으로 줄일 수 있어 창작과정의 효율성 향상에 도움을 줄 수 있다. 본 논문에서는 동영상 편집을 위한 인물 식별 및 검색 작업을 자동화하기 위해 다수의 인공지능 기술을 혼합하여 활용하는 기법을 제안한다. 객체 검출, 얼굴 검출, 자세 예측 기법을 사용하여 인물 객체에 대한 특징 정보를 수집하고, 수집된 정보를 바탕으로 얼굴 인식, 색 공간 분석 기법 등을 활용하여 인물 객체 식별 정보를 생성한다. 인물 특징 및 식별 정보는 편집 대상 영상의 각 프레임에 대해서 수집되며 영상 편집을 위한 프레임 단위 검색을 위한 메타데이터로 사용된다.

User-Friendly Personal Photo Browsing for Mobile Devices

  • Kim, Sang-Kyun;Lee, Jae-Won;Lee, Ryong;Hwang, Eui-Hyeon;Chung, Min-Gyo
    • ETRI Journal
    • /
    • 제30권3호
    • /
    • pp.432-440
    • /
    • 2008
  • In this paper, a user-friendly mobile photo album system and albuming functions to support it are introduced. Stand-alone implementation in a mobile device is considered. The main idea of user-friendly photo browsing for albuming functions is to enable users to organize and browse their photos along semantically meaningful axes of events, personal identities, and categories. Experimental results demonstrate that the proposed method would be sufficiently useful and efficient for browsing personal photos in mobile environment.

  • PDF

깊이 정보를 이용한 템플릿 매칭 기반의 고속 얼굴 추적 방법 (Template-Matching-based High-Speed Face Tracking Method using Depth Information)

  • 김우열;서영호;김동욱
    • 방송공학회논문지
    • /
    • 제18권3호
    • /
    • pp.349-361
    • /
    • 2013
  • 본 논문에서는 깊이 정보만을 이용하여 얼굴을 고속으로 추적하는 방법을 제안하다. 그 방법으로는 템플릿 매칭 방법을 사용하며, 템플릿 매칭 방법의 문제점인 과다한 수행시간의 문제를 해결하여 고속으로 얼굴을 추적하기 위하여 조기종료 기법과 sparse 탐색 기법을 적용하고, 그에 따른 추적오류를 보정하고자 주변 화소들을 대상으로 매칭보정을 수행한다. 얼굴의 움직임에 따른 깊이의 변화를 보정하기 위해 추적할 얼굴의 깊이 값을 추정하고 그 결과에 따라 템플릿의 크기를 조정한다. 또한 조정된 템플릿의 크기에 따라 템플릿 매칭을 수행할 탐색영역을 조정한다. 자체 제작한 테스트 시퀀스들을 사용하여 추적에 필요한 파리미터들을 결정하였으며, 또 다른 자체 제작한 테스트 시퀀스들과 MPEG에서 제공한 다시점 테스트 시퀀스를 제안한 방법에 적용하는 실험을 수행하였다. 실험결과 Kinect을 이용하여 자체제작($640{\times}480$) 시퀀스에서는 약 3%의 추적오류와 2.45ms의 수행시간을 보였으며, Lovebird1($1024{\times}768$) 시퀀스에서는 약 1%의 추적 오류와 7.46ms의 수행시간을 보였다.

배경영상에서 유전자 알고리즘을 이용한 얼굴의 각 부위 추출 (Facial Feature Extraction using Genetic Algorithm from Original Image)

  • 이형우;이상진;박석일;민홍기;홍승홍
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 하계종합학술대회 논문집(4)
    • /
    • pp.214-217
    • /
    • 2000
  • Many researches have been performed for human recognition and coding schemes recently. For this situation, we propose an automatic facial feature extraction algorithm. There are two main steps: the face region evaluation from original background image such as office, and the facial feature extraction from the evaluated face region. In the face evaluation, Genetic Algorithm is adopted to search face region in background easily such as office and household in the first step, and Template Matching Method is used to extract the facial feature in the second step. We can extract facial feature more fast and exact by using over the proposed Algorithm.

  • PDF