• Title/Summary/Keyword: face model

Search Result 2,002, Processing Time 0.031 seconds

A Probabilistic Model for the Prediction of Burr Formation in Face Milling

  • Suneung Ahn
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.60
    • /
    • pp.23-36
    • /
    • 2000
  • A probabilistic model of burr formation in face milling of gray cast iron is proposed. During a face milling operation, an irregular pattern of the edge profile consisting of burrs and edge breakouts is observed at the end of cut. Based on the metal cutting theory, we derive a probabilistic model. The operational bayesian modeling approach is adopted to include the relevant theory in the model.

  • PDF

Robust Face Alignment using Progressive AAM (점진적 AAM을 이용한 강인한 얼굴 윤곽 검출)

  • Kim, Dae-Hwan;Kim, Jae-Min;Cho, Seong-Won;Jang, Yong-Suk;Kim, Boo-Gyoun;Chung, Sun-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.2
    • /
    • pp.11-20
    • /
    • 2007
  • AAM has been successfully applied to face alignment, but its performance is very sensitive to initial values. In this paper, we propose a face alignment method using progressive AAM. The proposed method consists of two stages; modelling and relation derivation stage and fitting stage. Modelling and relation derivation stage first builds two AAM models; the inner face AAM model and the whole face AAM model and then derive the relation matrix between the inner face AAM model parameter vector and the whole face AAM model parameter vector. The fitting stage is processed progressively in two phases. In the first phase, the proposed method finds the feature parameters for the inner facial feature points of a new face, and then in the second phase it localizes the whole facial feature points of the new face using the initial values estimated utilizing the inner feature parameters obtained in the first phase and the relation matrix obtained in the first stage. Through experiments, it is verified that the proposed progressive AAM-based face alignment method is more robust with respect to pose, and face background than the conventional basic AAM-based face alignment.

Face Recognition using LDA Mixture Model (LDA 혼합 모형을 이용한 얼굴 인식)

  • Kim Hyun-Chul;Kim Daijin;Bang Sung-Yang
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.8
    • /
    • pp.789-794
    • /
    • 2005
  • LDA (Linear Discriminant Analysis) provides the projection that discriminates the data well, and shows a very good performance for face recognition. However, since LDA provides only one transformation matrix over whole data, it is not sufficient to discriminate the complex data consisting of many classes like honan faces. To overcome this weakness, we propose a new face recognition method, called LDA mixture model, that the set of alf classes are partitioned into several clusters and we get a transformation matrix for each cluster. This detailed representation will improve the classification performance greatly. In the simulation of face recognition, LDA mixture model outperforms PCA, LDA, and PCA mixture model in terms of classification performance.

Face and Its Components Extraction of Animation Characters Based on Dominant Colors (주색상 기반의 애니메이션 캐릭터 얼굴과 구성요소 검출)

  • Jang, Seok-Woo;Shin, Hyun-Min;Kim, Gye-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.10
    • /
    • pp.93-100
    • /
    • 2011
  • The necessity of research on extracting information of face and facial components in animation characters have been increasing since they can effectively express the emotion and personality of characters. In this paper, we introduce a method to extract face and facial components of animation characters by defining a mesh model adequate for characters and by using dominant colors. The suggested algorithm first generates a mesh model for animation characters, and extracts dominant colors for face and facial components by adapting the mesh model to the face of a model character. Then, using the dominant colors, we extract candidate areas of the face and facial components from input images and verify if the extracted areas are real face or facial components by means of color similarity measure. The experimental results show that our method can reliably detect face and facial components of animation characters.

Facial Features and Motion Recovery using multi-modal information and Paraperspective Camera Model (다양한 형식의 얼굴정보와 준원근 카메라 모델해석을 이용한 얼굴 특징점 및 움직임 복원)

  • Kim, Sang-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.9B no.5
    • /
    • pp.563-570
    • /
    • 2002
  • Robust extraction of 3D facial features and global motion information from 2D image sequence for the MPEG-4 SNHC face model encoding is described. The facial regions are detected from image sequence using multi-modal fusion technique that combines range, color and motion information. 23 facial features among the MPEG-4 FDP (Face Definition Parameters) are extracted automatically inside the facial region using color transform (GSCD, BWCD) and morphological processing. The extracted facial features are used to recover the 3D shape and global motion of the object using paraperspective camera model and SVD (Singular Value Decomposition) factorization method. A 3D synthetic object is designed and tested to show the performance of proposed algorithm. The recovered 3D motion information is transformed into global motion parameters of FAP (Face Animation Parameters) of the MPEG-4 to synchronize a generic face model with a real face.

Research and Optimization of Face Detection Algorithm Based on MTCNN Model in Complex Environment (복잡한 환경에서 MTCNN 모델 기반 얼굴 검출 알고리즘 개선 연구)

  • Fu, Yumei;Kim, Minyoung;Jang, Jong-wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.1
    • /
    • pp.50-56
    • /
    • 2020
  • With the rapid development of deep neural network theory and application research, the effect of face detection has been improved. However, due to the complexity of deep neural network calculation and the high complexity of the detection environment, how to detect face quickly and accurately becomes the main problem. This paper is based on the relatively simple model of the MTCNN model, using FDDB (Face Detection Dataset and Benchmark Homepage), LFW (Field Label Face) and FaceScrub public datasets as training samples. At the same time of sorting out and introducing MTCNN(Multi-Task Cascaded Convolutional Neural Network) model, it explores how to improve training speed and Increase performance at the same time. In this paper, the dynamic image pyramid technology is used to replace the traditional image pyramid technology to segment samples, and OHEM (the online hard example mine) function in MTCNN model is deleted in training, so as to improve the training speed.

Development of mechanistic model for cutting force prediction considering cutting tool states in face milling (정면밀링공정에서 공구상태 변화를 고려한 절삭력예측 모델의 개발)

  • Lee, S.S.;Kim, H.S.;Lee, Y.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.11
    • /
    • pp.63-73
    • /
    • 1995
  • A mechanistic force system model considering the flank wear for the face milling process has been developed. The model predicts variation of the cutting forces according to flank wear in face milling over a range of cutting conditions, cutter geometries and cutting process geometries including relative positions of cutter to workpiece and rounouts. Flycutting and multitoth cutting teste were conducted on SS41 mild steel with sintered carbide tool. In order to verify the mechanistic force model considering the flank wear of cutting tools, a series of experiments was performed with single and multitooth cutters in various cutting conditions. The results show good agreement between the predicted and measured cutting force profiles and magnitudes in time and frequency domains.

  • PDF

Evaluation of Tunnel Face Stability with the Consideration of Seepage Forces (침투력을 고려한 토사터널 막장의 안정성 평가방법에 대한 고찰)

  • 남석우;이인모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.193-200
    • /
    • 1999
  • Since Broms and Bennermark(1967) suggested the face stability criterion based on laboratory extrusion tests and field observations, the face stability of a tunnel driven in cohesive material has been studied by several authors. And recently, more general solution for the tunnel front is given by Leca and Panet(1988). They adopted a limit state design concept to evaluate the face stability of a shallow tunnel driven into cohesionless material and showed that the calculated upper bound solution represented the actual behavior reasonably well. In this study, two factors are simultaneously considered for assessing tunnel face stability: One is the effective stress acting on the tunnel front calculated by upper bound solution; and the other is the seepage force calculated by numerical analysis under the condition of steady state ground water flow. The model tests were performed to evaluate the seepage force acting on the tunnel front and these results were compared with results of numerical analysis. Consequently, the methodology to evaluate the stability of a tunnel face including limit analysis and seepage analysis is suggested under the condition of steady state ground water flow.

  • PDF

Age Invariant Face Recognition Based on DCT Feature Extraction and Kernel Fisher Analysis

  • Boussaad, Leila;Benmohammed, Mohamed;Benzid, Redha
    • Journal of Information Processing Systems
    • /
    • v.12 no.3
    • /
    • pp.392-409
    • /
    • 2016
  • The aim of this paper is to examine the effectiveness of combining three popular tools used in pattern recognition, which are the Active Appearance Model (AAM), the two-dimensional discrete cosine transform (2D-DCT), and Kernel Fisher Analysis (KFA), for face recognition across age variations. For this purpose, we first used AAM to generate an AAM-based face representation; then, we applied 2D-DCT to get the descriptor of the image; and finally, we used a multiclass KFA for dimension reduction. Classification was made through a K-nearest neighbor classifier, based on Euclidean distance. Our experimental results on face images, which were obtained from the publicly available FG-NET face database, showed that the proposed descriptor worked satisfactorily for both face identification and verification across age progression.

Predicting Cutting Forces in Face Milling with the Orthogonal Machining Theory (2차원 절삭이론을 이용한 정면밀링 절삭력 예측)

  • 김국원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.150-157
    • /
    • 2002
  • This paper presents an effective cutting force model that enable us to predict the instantaneous cutting force in face milling from a knowledge of the work material properties and cutting conditions. The development of the model is based on the orthogonal machining theory with the effective rake angle which is defined in the plane containing the cutting velocity and chip flow vectors. Face milling testes are performed at different feeds and, a fairly good agreement is shown between the predicted cutting forces and test results.