• Title/Summary/Keyword: face feature

Search Result 883, Processing Time 0.03 seconds

An Efficient Algorithm of Face Recognition Using Facial Feature Vectors (얼굴 특징 벡터를 이용한 효율적인 얼굴 인식 알고리즘)

  • 전승철;박성한
    • Journal of Broadcast Engineering
    • /
    • v.3 no.2
    • /
    • pp.164-171
    • /
    • 1998
  • 사람의 얼굴은 일반 객체와는 다르게 정확히 구별되는 특징이 없다. 따라서 일반적으로 사람 얼굴에 관한 연구에서는 인간이 사람의 얼굴을 볼 대 가장 먼저 인식을 하는 눈, 코, 입을 특징으로 정하고 있다. 이러한 특징은 사람에 따라 다르게 나타나며 주위환경에 영향을 받는다. 따라서 이러한 사람의 특징을 정확히 찾아내는 것이 중요하다. 본 논문에서는 얼굴 특징점의 기하학적 성질을 이용하여 눈, 코, 입의 특징점을 효율적으로 찾아내는 알고리즘을 제안하고 있다. 이러한 특징점을 이용해서 얼굴 특징점 벡터와 얼굴 특징점 영상을 얻어낸다. 이 후 임의 입력 사람 얼굴에 대해서 얼굴 특징점 벡터의 유클리디안 거리와 밀 기록된 특징점 영상과의 상관관계를 이용해 유사도를 계산해서 얼굴을 인식한다. 제안하는 방법은 기존의 방법보다 계산 복잡도가 적으며 또한 정확한 인식을 얻는다.

  • PDF

Human Face Recognition using Feature Extraction Based on HOLA(Higher Order Local Autocorrelation) and BP Neural Networks (HOLA 기반 특징추출과 BP 신경망을 이용한 얼굴 인식)

  • 최광미;서요한;정채영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.541-543
    • /
    • 2002
  • 본 논문에서는 HOLA(고차국소자동상관계수)를 이용한 특징추출과 BP(Backpropagation Network) 알고리즘을 이용하여 얼굴을 인식하는 방법을 제안한다. 이를 위해 동일한 환경, 즉 일정한 조도 하에서 카메라로부터 동일거리에 있는 영상을 256$\times$256 크기의 그레이 스케일(Gray Scale)로 취득하여 영상내의 잡음을 가우시안(Gaussian) 필터를 이용하여 제거한다. 차영상을 이용하여 얼굴영역을 분리한 후 얼굴영역의 특징벡터를 구하기 위하여 HOLA(고차 국소 자동 상관함수)를 사용한다. 계산된 특징벡터는 BP 신경망의 학습을 통하여 얼굴인식을 위한 데이터로 사용된다. 시뮬레이션을 통해 제안된 알고리즘에 의한 인식률향상과 속도 향상을 입증한다.

  • PDF

Face Detecting and Tracking using Active Appearance Models and CAMSHIFT with a Pan-Tilt-Zoom-Camera (Pan-Tilt-Zoom-Camera에서 AAM과 CAMSHIFT를 이용한 얼굴 검출 및 추적)

  • Bae, Jeong-Wan;Choi, Kwun-Taeg;Byun, Hye-Ran
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.931-933
    • /
    • 2005
  • 감시 시스템에서 많이 사용되는 팬틸트줌(Pan-Tilt-Zoom) 카메라로 객체 검출과 추적을 할 때 카메라를 섬세하게 제어하는 것이 중요하다. 본 논문은 팬틸트줌 카메라를 이용하여 얼굴을 검출 및 추적하는 감시 시스템 구성과 카메라 제어 방법을 제안한다. 얼굴 검출을 위해서 P. Viola가 제안한 Haar-like feature를 이용한 빠른 객체 검출방법을 이용하고 얼굴 추적을 위해서 CAMSHIFT와 AAM을 이용하여 얼굴 추적과 얼굴 특징 정보 추출이 가능한 감시 시스템 구현을 하였다.

  • PDF

Gabor descriptors extraction in the SURF feature point for improvement accuracy in face recognition (얼굴인식에서 정확도 향상을 위한 SURF 특징점에서의 Gabor 기술어 추출)

  • Kim, Ji Eun;Cho, Hye Jeong;Chung, Kwang-Sue;Oh, Seoung-Jun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.19-22
    • /
    • 2011
  • 본 논문에서는 대표적인 특징점 추출 알고리즘인 SURF (Speeded Up Robust Features)와 얼굴인식에서 널리 쓰이는 Gabor 기술어를 이용한 얼굴 인식 방법을 소개한다. SURF 기반 영상인식 방법은 특징점을 찾고 해당 특징점에서 기술어를 추출한 후, 정합을 수행한다. 본 논문에서는 SURF 를 통해 추출한 특징점에서 Gabor 웨이블릿 변환을 사용해 기술어를 추출하는 얼굴인식 방법을 제안한다. 잘 알려진 ORL 데이터베이스에서의 실험에서 제안한 방법이 기존 SURF 기반의 얼굴 인식 방법에 비해 더 높은 얼굴 인식 성능을 보여줄 뿐 아니라 정합시간을 포함한 처리 속도면에서도 더 우수한 성능을 보였다. 이러한 실험 결과를 통하여 제안하는 방법이 SURF 보다 얼굴 인식에 적합함을 확인할 수 있었다.

  • PDF

Implementation of Realtime Face Recognition System using Haar-Like Features and PCA in Mobile Environment (모바일 환경에서 Haar-Like Features와 PCA를 이용한 실시간 얼굴 인증 시스템)

  • Kim, Jung Chul;Heo, Bum Geun;Shin, Na Ra;Hong, Ki Cheon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.2
    • /
    • pp.199-207
    • /
    • 2010
  • Recently, large amount of information in IDS(Intrusion Detection System) can be un manageable and also be mixed with false prediction error. In this paper, we propose a data mining methodology for IDS, which contains uncertainty based on training process and post-processing analysis additionally. Our system is trained to classify the existing attack for misuse detection, to detect the new attack pattern for anomaly detection, and to define border patter between attack and normal pattern. In experimental results show that our approach improve the performance against existing attacks and new attacks, from 0.62 to 0.84 about 35%.

Pattern Classification Method using SOFM and Multilayer Neural Network (SOFM과 다층신경회로망을 이용한 패턴 분류 방식)

  • 박진성;공휘식;이현관;김주웅;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.296-300
    • /
    • 2002
  • We proposed a method of a pattern classification using unsupervised teaming rules, SOFM, and supervised teaming rules, Multilayer neural network. Establish result that classify and get input pattern using SOFM by initial weighting vector of Multilayer neural network and target value. Got superior Performance as result that do simulation about face image to confirm usefulness of way that propose.

  • PDF

Enter Control System using Tooth Recognition (치아 인식을 이용한 출입 통제 시스템)

  • 조혜진;최연성;김동호
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.231-234
    • /
    • 2002
  • This paper considers a system related to biometrics which can control entrance and exit based on pattern and feature of a tooth. It is aimed at research and development of a controling entrance and exit system connected advanced image understanding technique using a tooth recognition that treats a tooth of simple and fixed structure. We think that the system is applied(or utilized) as pre-step or assistance means of face recognition and expect that the system achieves greatly effective results.

  • PDF

Development of Reduction Algorithm for Face Detection Error Using MCT and Neural Network (MCT와 신경망을 이용한 얼굴 오검출 감소 알고리즘 개발)

  • Ra, Seung-Tak;Lee, Seung-Ho
    • Annual Conference of KIPS
    • /
    • 2016.04a
    • /
    • pp.700-703
    • /
    • 2016
  • OpenCV(Open Computer Vision)에서 제공하는 얼굴 검출 알고리즘은 Haar-like feature와 Cascade 방식을 이용하여 얼굴의 패턴을 찾아내 얼굴을 검출한다. 그러나 우연히 얼굴이 아닌 곳이 얼굴과 유사한 패턴일 경우, 얼굴로 인식하는 오류를 범하게 된다. 따라서 본 논문은 MCT(Modified Census Transform)와 신경망을 이용하여 잘못된 얼굴 검출 영역을 감소시키는 알고리즘을 제안한다. MCT는 다양한 조명 조건에서도 강인한 얼굴 영상의 지역적 구조 특징을 추출하기 위하여 사용되고, 신경망 알고리즘은 Haar-Cascade 알고리즘의 얼굴 검출 방법으로 검출된 영역이 실제로 얼굴인지 아닌지를 판단하기 위하여 사용된다. 실험에서 사용된 6개의 데이터들은 인터넷에서 수집한 것으로서, Haar-Cascade 알고리즘의 얼굴 검출 방법으로 얼굴을 검출하였을 때 오검출된 영역이 1개 이상 존재한다. 본 논문에서 제안한 알고리즘으로 실험한 결과, Haar-Cascade 알고리즘의 얼굴 검출 방법에 비하여 오검출된 영역이 감소된 것을 확인할 수 있었다.

Prediction Method for the Implicit Interpersonal Trust Between Facebook Users (페이스북 사용자간 내재된 신뢰수준 예측 방법)

  • Song, Hee Seok
    • Journal of Information Technology Applications and Management
    • /
    • v.20 no.2
    • /
    • pp.177-191
    • /
    • 2013
  • Social network has been expected to increase the value of social capital through online user interactions which remove geographical boundary. However, online users in social networks face challenges of assessing whether the anonymous user and his/her providing information are reliable or not because of limited experiences with a small number of users. Therefore. it is vital to provide a successful trust model which builds and maintains a web of trust. This study aims to propose a prediction method for the interpersonal trust which measures the level of trust about information provider in Facebook. To develop the prediction method. we first investigated behavioral research for trust in social science and extracted 5 antecedents of trust : lenience, ability, steadiness, intimacy, and similarity. Then we measured the antecedents from the history of interactive behavior and built prediction models using the two decision trees and a computational model. We also applied the proposed method to predict interpersonal trust between Facebook users and evaluated the prediction accuracy. The predicted trust metric has dynamic feature which can be adjusted over time according to the interaction between two users.

3D Face Modeling Using Feature Line Fitting (특징선 정합을 이용한 3차원 얼굴 모델링)

  • 김항기;김황수
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.505-507
    • /
    • 2000
  • 본 논문에서는 3차원 머리 모델에 몇 장의 사진으로부터 얻은 텍스쳐를 입혀 실물처럼 보이는 3차원 인물 모델을 얻는 방법을 제시한다. 모델에 사진들을 맞추는 방법으로는 특징선을 정합하는 방법을 사용한다. 모델에는 얼굴의 특징을 나타낼 수 있는 눈/코/입/눈썹 등의 특징선을 지정하였으며 이들을 사진에 정합시킴으로써 모델의 각 부위에 필요한 텍스쳐 영상을 얻는다. 여러 방향에서 본 사진들을 사용함으로써 더욱 정확한 얼굴 모델을 얻을 수 있는데, 이때 모델의 한 면은 여러 장의 사진에서 합성되어야 하는 경우가 생긴다. 이는 각 사진에서 얼굴이 보는 방향과 모델면이 이루는 각을 이용하여 그 사진이 그 면의 텍스쳐에 기여하는 정도를 계산할 수 있다. 이렇게 함으로써 사진을 이용한 저가의 3차원 캡쳐 시스템을 구현할 수 있다.

  • PDF