• 제목/요약/키워드: face feature

Search Result 882, Processing Time 0.677 seconds

Fast Gabor Feature Extraction for Real Time Face Recognition (실시간 얼굴인식을 위한 빠른 Gabor 특징 추출)

  • Cho, Kyoung-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.597-600
    • /
    • 2007
  • Face is considered to be one of the biometrics in person identification. But Face recognition is a high dimensional pattern recognition problem. Even low-resolution face images generate huge dimensional feature space. The aim of this paper is to present a fast feature extraction method for real time human face recognition. first, It compute eigen-vector and eigen-value by Principle component analysis on inputed human face image, and propose method of feature extraction that make feature vector by apply gabor filter to computed eigen-vector. And it compute feature value which multiply by made eigen-value. This study simulations performed using the ORL Database.

  • PDF

Face Detection for Interactive TV Control System in Near Infra-Red Images (인터랙티브 TV 컨트롤 시스템을 위한 근적외선 영상에서의 얼굴 검출)

  • Won, Chul-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.388-392
    • /
    • 2011
  • In this paper, a face detection method for interactive TV control system using a new feature, edge histogram feature, with a support vector machine(SVM) in the near-infrared(NIR) images is proposed. The edge histogram feature is extracted using 16-directional edge intensity and a histogram. Compared to the previous method using local binary pattern(LBP) feature, the proposed method using edge histogram feature has better performance in both smaller feature size and lower equal error rate(EER) for face detection experiments in NIR databases.

Full face recognition using the feature extracted gy shape analyzing and the back-propagation algorithm (형태분석에 의한 특징 추출과 BP알고리즘을 이용한 정면 얼굴 인식)

  • 최동선;이주신
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.10
    • /
    • pp.63-71
    • /
    • 1996
  • This paper proposes a method which analyzes facial shape and extracts positions of eyes regardless of the tilt and the size of input iamge. With the extracted feature parameters of facial element by the method, full human faces are recognized by a neural network which BP algorithm is applied on. Input image is changed into binary codes, and then labelled. Area, circumference, and circular degree of the labelled binary image are obtained by using chain code and defined as feature parameters of face image. We first extract two eyes from the similarity and distance of feature parameter of each facial element, and then input face image is corrected by standardizing on two extracted eyes. After a mask is genrated line historgram is applied to finding the feature points of facial elements. Distances and angles between the feature points are used as parameters to recognize full face. To show the validity learning algorithm. We confirmed that the proposed algorithm shows 100% recognition rate on both learned and non-learned data for 20 persons.

  • PDF

3D Face Recognition using Local Depth Information

  • 이영학;심재창;이태홍
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.11
    • /
    • pp.818-825
    • /
    • 2002
  • Depth information is one of the most important factor for the recognition of a digital face image. Range images are very useful, when comparing one face with other faces, because of implicating depth information. As the processing for the whole fare produces a lot of calculations and data, face images ran be represented in terms of a vector of feature descriptors for a local area. In this paper, depth areas of a 3 dimensional(3D) face image were extracted by the contour line from some depth value. These were resampled and stored in consecutive location in feature vector using multiple feature method. A comparison between two faces was made based on their distance in the feature space, using Euclidian distance. This paper reduced the number of index data in the database and used fewer feature vectors than other methods. Proposed algorithm can be highly recognized for using local depth information and less feature vectors or the face.

Feature-Point Extraction by Dynamic Linking Model bas Wavelets and Fuzzy C-Means Clustering Algorithm (Gabor 웨이브렛과 FCM 군집화 알고리즘에 기반한 동적 연결모형에 의한 얼굴표정에서 특징점 추출)

  • 신영숙
    • Korean Journal of Cognitive Science
    • /
    • v.14 no.1
    • /
    • pp.11-16
    • /
    • 2003
  • This Paper extracts the edge of main components of face with Gator wavelets transformation in facial expression images. FCM(Fuzzy C-Means) clustering algorithm then extracts the representative feature points of low dimensionality from the edge extracted in neutral face. The feature-points of the neutral face is used as a template to extract the feature-points of facial expression images. To match point to Point feature points on an expression face against each feature point on a neutral face, it consists of two steps using a dynamic linking model, which are called the coarse mapping and the fine mapping. This paper presents an automatic extraction of feature-points by dynamic linking model based on Gabor wavelets and fuzzy C-means(FCM) algorithm. The result of this study was applied to extract features automatically in facial expression recognition based on dimension[1].

  • PDF

A Facial Feature Detection using Light Compensation and Appearance-based Features (빛 보상과 외형 기반의 특징을 이용한 얼굴 특징 검출)

  • Kim Jin-Ok
    • Journal of Internet Computing and Services
    • /
    • v.7 no.3
    • /
    • pp.143-153
    • /
    • 2006
  • Facial feature detection is a basic technology in applications such as human computer interface, face recognition, face tracking and image database management. The speed of feature detection algorithm is one of the main issues for facial feature detection in real-time environment. Primary factors like a variation by lighting effect, location, rotation and complex background give an effect to decrease a detection ratio. A facial feature detection algorithm is proposed to improve the detection ratio and the detection speed. The proposed algorithm detects skin regions over the entire image improved by CLAHE, an algorithm for light compensation against varying lighting conditions. To extract facial feature points on detected skin regions, it uses appearance-based geometrical characteristics of a face. Since the method shows fast detection speed as well as efficient face-detection ratio, it can be applied in real-time application to face tracking and face recognition.

  • PDF

Real-Time Face Detection and Tracking Using the AdaBoost Algorithm (AdaBoost 알고리즘을 이용한 실시간 얼굴 검출 및 추적)

  • Lee, Wu-Ju;Kim, Jin-Chul;Lee, Bae-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.10
    • /
    • pp.1266-1275
    • /
    • 2006
  • In this paper, we propose a real-lime face detection and tracking algorithm using AdaBoost(Adaptive Boosting) algorithm. The proposed algorithm consists of two levels such as the face detection and the face tracking. First, the face detection used the eight-wavelet feature models which ate very simple. Each feature model applied to variable size and position, and then create initial feature set. The intial feature set and the training images which were consisted of face images, non-face images used the AdaBoost algorithm. The basic principal of the AdaBoost algorithm is to create final strong classifier joining linearly weak classifiers. In the training of the AdaBoost algorithm, we propose SAT(Summed-Area Table) method. Face tracking becomes accomplished at real-time using the position information and the size information of detected face, and it is extended view region dynamically using the fan-Tilt camera. We are setting to move center of the detected face to center of the Image. The experiment results were amply satisfied with the computational efficiency and the detection rates. In real-time application using Pan-Tilt camera, the detecter runs at about 12 frames per second.

  • PDF

Improvement of Active Shape Model for Detecting Face Features in iOS Platform (iOS 플랫폼에서 Active Shape Model 개선을 통한 얼굴 특징 검출)

  • Lee, Yong-Hwan;Kim, Heung-Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.2
    • /
    • pp.61-65
    • /
    • 2016
  • Facial feature detection is a fundamental function in the field of computer vision such as security, bio-metrics, 3D modeling, and face recognition. There are many algorithms for the function, active shape model is one of the most popular local texture models. This paper addresses issues related to face detection, and implements an efficient extraction algorithm for extracting the facial feature points to use on iOS platform. In this paper, we extend the original ASM algorithm to improve its performance by four modifications. First, to detect a face and to initialize the shape model, we apply a face detection API provided from iOS CoreImage framework. Second, we construct a weighted local structure model for landmarks to utilize the edge points of the face contour. Third, we build a modified model definition and fitting more landmarks than the classical ASM. And last, we extend and build two-dimensional profile model for detecting faces within input images. The proposed algorithm is evaluated on experimental test set containing over 500 face images, and found to successfully extract facial feature points, clearly outperforming the original ASM.

Face Recognition Based on Facial Landmark Feature Descriptor in Unconstrained Environments (비제약적 환경에서 얼굴 주요위치 특징 서술자 기반의 얼굴인식)

  • Kim, Daeok;Hong, Jongkwang;Byun, Hyeran
    • Journal of KIISE
    • /
    • v.41 no.9
    • /
    • pp.666-673
    • /
    • 2014
  • This paper proposes a scalable face recognition method for unconstrained face databases, and shows a simple experimental result. Existing face recognition research usually has focused on improving the recognition rate in a constrained environment where illumination, face alignment, facial expression, and background is controlled. Therefore, it cannot be applied in unconstrained face databases. The proposed system is face feature extraction algorithm for unconstrained face recognition. First of all, we extract the area that represent the important features(landmarks) in the face, like the eyes, nose, and mouth. Each landmark is represented by a high-dimensional LBP(Local Binary Pattern) histogram feature vector. The multi-scale LBP histogram vector corresponding to a single landmark, becomes a low-dimensional face feature vector through the feature reduction process, PCA(Principal Component Analysis) and LDA(Linear Discriminant Analysis). We use the Rank acquisition method and Precision at k(p@k) performance verification method for verifying the face recognition performance of the low-dimensional face feature by the proposed algorithm. To generate the experimental results of face recognition we used the FERET, LFW and PubFig83 database. The face recognition system using the proposed algorithm showed a better classification performance over the existing methods.

Using Spatial Pyramid Based Local Descriptor for Face Recognition (공간 계층적 구조 기반 지역 기술자 활용 얼굴인식 기술)

  • Kim, Kyeong Tae;Choi, Jae Young
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.5
    • /
    • pp.758-768
    • /
    • 2017
  • In this paper, we present a novel method to extract face representation based on multi-resolution spatial pyramid. In our method, a face is subdivided into increasingly finer sub-regions (local regions) and represented at multiple levels of histogram representations. To cope with misaligned problem, patch-based local descriptor extraction has been also developed in a novel way. To preserve multiple levels of detail in local characteristics and also encode holistic spatial configuration, histograms from all levels of spatial pyramid are integrated by using dimensionality reduction and feature combination, leading to our spatial-pyramid face feature representation. We incorporate our proposed face features into general face recognition pipeline and achieve state-of-the-art results on challenging face recognition problems.