• Title/Summary/Keyword: face expression recognition

Search Result 197, Processing Time 0.025 seconds

A Face Expression Recognition Method using Histograms (히스토그램을 이용한 얼굴 표정 인식 방법)

  • Huh, Kyung Moo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.5
    • /
    • pp.520-525
    • /
    • 2014
  • Generally, feature area detection methods are widely used for face expression recognition by detecting the feature areas of human eyes, eyebrows and mouth. In this paper, we proposed a face expression recognition method using the histograms of the face, eyes and mouth for many applications including robot technology. The experimental results show that the proposed method has a new type of face expression recognition capability compared to conventional methods.

Improvement of Face Recognition Rate by Normalization of Facial Expression (표정 정규화를 통한 얼굴 인식율 개선)

  • Kim, Jin-Ok
    • The KIPS Transactions:PartB
    • /
    • v.15B no.5
    • /
    • pp.477-486
    • /
    • 2008
  • Facial expression, which changes face geometry, usually has an adverse effect on the performance of a face recognition system. To improve the face recognition rate, we propose a normalization method of facial expression to diminish the difference of facial expression between probe and gallery faces. Two approaches are used to facial expression modeling and normalization from single still images using a generic facial muscle model without the need of large image databases. The first approach estimates the geometry parameters of linear muscle models to obtain a biologically inspired model of the facial expression which may be changed intuitively afterwards. The second approach uses RBF(Radial Basis Function) based interpolation and warping to normalize the facial muscle model as unexpressed face according to the given expression. As a preprocessing stage for face recognition, these approach could achieve significantly higher recognition rates than in the un-normalized case based on the eigenface approach, local binary patterns and a grey-scale correlation measure.

Feature Variance and Adaptive classifier for Efficient Face Recognition (효과적인 얼굴 인식을 위한 특징 분포 및 적응적 인식기)

  • Dawadi, Pankaj Raj;Nam, Mi Young;Rhee, Phill Kyu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.11a
    • /
    • pp.34-37
    • /
    • 2007
  • Face recognition is still a challenging problem in pattern recognition field which is affected by different factors such as facial expression, illumination, pose etc. The facial feature such as eyes, nose, and mouth constitute a complete face. Mouth feature of face is under the undesirable effect of facial expression as many factors contribute the low performance. We proposed a new approach for face recognition under facial expression applying two cascaded classifiers to improve recognition rate. All facial expression images are treated by general purpose classifier at first stage. All rejected images (applying threshold) are used for adaptation using GA for improvement in recognition rate. We apply Gabor Wavelet as a general classifier and Gabor wavelet with Genetic Algorithm for adaptation under expression variance to solve this issue. We have designed, implemented and demonstrated our proposed approach addressing this issue. FERET face image dataset have been chosen for training and testing and we have achieved a very good success.

Recognition and Generation of Facial Expression for Human-Robot Interaction (로봇과 인간의 상호작용을 위한 얼굴 표정 인식 및 얼굴 표정 생성 기법)

  • Jung Sung-Uk;Kim Do-Yoon;Chung Myung-Jin;Kim Do-Hyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.255-263
    • /
    • 2006
  • In the last decade, face analysis, e.g. face detection, face recognition, facial expression recognition, is a very lively and expanding research field. As computer animated agents and robots bring a social dimension to human computer interaction, interest in this research field is increasing rapidly. In this paper, we introduce an artificial emotion mimic system which can recognize human facial expressions and also generate the recognized facial expression. In order to recognize human facial expression in real-time, we propose a facial expression classification method that is performed by weak classifiers obtained by using new rectangular feature types. In addition, we make the artificial facial expression using the developed robotic system based on biological observation. Finally, experimental results of facial expression recognition and generation are shown for the validity of our robotic system.

The Effect of Emotional Expression Change, Delay, and Background at Retrieval on Face Recognition (얼굴자극의 검사단계 표정변화와 검사 지연시간, 자극배경이 얼굴재인에 미치는 효과)

  • Youngshin Park
    • Korean Journal of Culture and Social Issue
    • /
    • v.20 no.4
    • /
    • pp.347-364
    • /
    • 2014
  • The present study was conducted to investigate how emotional expression change, test delay, and background influence on face recognition. In experiment 1, participants were presented with negative faces at study phase and administered for standard old-new recognition test including targets of negative and neutral expression for the same faces. In experiment 2, participants were studied negative faces and tested by old-new face recognition test with targets of negative and positive faces. In experiment 3, participants were presented with neutral faces at study phase and had to identify the same faces with no regard for negative and neutral expression at face recognition test. In all three experiments, participants were assigned into either immediate test or delay test, and target faces were presented in both white and black background. Results of experiments 1 and 2 indicated higher rates for negative faces than neutral or positive faces. Facial expression consistency enhanced face recognition memory. In experiment 3, the superiority of facial expression consistency were demonstrated by higher rates for neutral faces at recognition test. If facial expressions were consistent across encoding and retrieval, memory performance on face recognition were enhanced in all three experiments. And the effect of facial expression change have different effects on background conditions. The findings suggest that facial expression change make face identification hard, and time and background also affect on face recognition.

  • PDF

The Facial Expression Recognition using the Inclined Face Geometrical information

  • Zhao, Dadong;Deng, Lunman;Song, Jeong-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.881-886
    • /
    • 2012
  • The paper is facial expression recognition based on the inclined face geometrical information. In facial expression recognition, mouth has a key role in expressing emotions, in this paper the features is mainly based on the shapes of mouth, followed by eyes and eyebrows. This paper makes its efforts to disperse every feature values via the weighting function and proposes method of expression classification with excellent classification effects; the final recognition model has been constructed.

  • PDF

Face Recognition Using Adaboost Loaming (Adaboost 학습을 이용한 얼굴 인식)

  • 정종률;최병욱
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2016-2019
    • /
    • 2003
  • In this paper, we take some features for face recognition out of face image, using a simple type of templates. We use the extracted features to do Adaboost learning for face recognition. Using a carefully-chosen feature among these features, we can make a weak face classifier for face recognition. And doing Adaboost learning on and on with those chosen several weak classifiers, we can get a strong face classifier. By using Adaboost Loaming, we can choose particular features which is not easily subject to changes in illumination and facial expression about several images of one person, and construct face recognition system. Therefore, the face classifier bulit like the above way has robustness in both facial expression and illumination variation, and it finally gives capability of recognizing face fast due to the simple feature.

  • PDF

Weighted Soft Voting Classification for Emotion Recognition from Facial Expressions on Image Sequences (이미지 시퀀스 얼굴표정 기반 감정인식을 위한 가중 소프트 투표 분류 방법)

  • Kim, Kyeong Tae;Choi, Jae Young
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1175-1186
    • /
    • 2017
  • Human emotion recognition is one of the promising applications in the era of artificial super intelligence. Thus far, facial expression traits are considered to be the most widely used information cues for realizing automated emotion recognition. This paper proposes a novel facial expression recognition (FER) method that works well for recognizing emotion from image sequences. To this end, we develop the so-called weighted soft voting classification (WSVC) algorithm. In the proposed WSVC, a number of classifiers are first constructed using different and multiple feature representations. In next, multiple classifiers are used for generating the recognition result (namely, soft voting) of each face image within a face sequence, yielding multiple soft voting outputs. Finally, these soft voting outputs are combined through using a weighted combination to decide the emotion class (e.g., anger) of a given face sequence. The weights for combination are effectively determined by measuring the quality of each face image, namely "peak expression intensity" and "frontal-pose degree". To test the proposed WSVC, CK+ FER database was used to perform extensive and comparative experimentations. The feasibility of our WSVC algorithm has been successfully demonstrated by comparing recently developed FER algorithms.

Analogical Face Generation based on Feature Points

  • Yoon, Andy Kyung-yong;Park, Ki-cheul;Oh, Duck-kyo;Cho, Hye-young;Jang, Jung-hyuk
    • Journal of Multimedia Information System
    • /
    • v.6 no.1
    • /
    • pp.15-22
    • /
    • 2019
  • There are many ways to perform face recognition. The first step of face recognition is the face detection step. If the face is not found in the first step, the face recognition fails. Face detection research has many difficulties because it can be varied according to face size change, left and right rotation and up and down rotation, side face and front face, facial expression, and light condition. In this study, facial features are extracted and the extracted features are geometrically reconstructed in order to improve face recognition rate in extracted face region. Also, it is aimed to adjust face angle using reconstructed facial feature vector, and to improve recognition rate for each face angle. In the recognition attempt using the result after the geometric reconstruction, both the up and down and the left and right facial angles have improved recognition performance.

Emotion Recognition of Facial Expression using the Hybrid Feature Extraction (혼합형 특징점 추출을 이용한 얼굴 표정의 감성 인식)

  • Byun, Kwang-Sub;Park, Chang-Hyun;Sim, Kwee-Bo
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.132-134
    • /
    • 2004
  • Emotion recognition between human and human is done compositely using various features that are face, voice, gesture and etc. Among them, it is a face that emotion expression is revealed the most definitely. Human expresses and recognizes a emotion using complex and various features of the face. This paper proposes hybrid feature extraction for emotions recognition from facial expression. Hybrid feature extraction imitates emotion recognition system of human by combination of geometrical feature based extraction and color distributed histogram. That is, it can robustly perform emotion recognition by extracting many features of facial expression.

  • PDF