• Title/Summary/Keyword: fabricating temperature

Search Result 202, Processing Time 0.023 seconds

Fabrication and Evaluation Properties of Titanium Sintered-body for a Sputtering Target by Spark Plasma Sintering Process (방전플라즈마 소결 공정을 이용한 스퍼터링 타겟용 타이타늄 소결체 제조 및 특성 평가)

  • Lee, Seung-Min;Park, Hyun-Kuk;Youn, Hee-Jun;Yang, Jun-Mo;Woo, Kee-Do;Oh, Ik-Hyun
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.11
    • /
    • pp.845-852
    • /
    • 2011
  • The Spark Plasma Sintering(SPS) method offers a means of fabricating a sintered-body having high density without grain growth through short sintering time and a one-step process. A titanium compact having high density and purity was fabricated by the SPS process. It can be used to fabricate a Ti sputtering target with controlled parameters such as sintering temperature, heating rate, and pressure to establish the optimized processing conditions. The compact/target(?) has a diameter of ${\Phi}150{\times}6.35mm$. The density, purity, phase transformation, and microstructure of the Ti compact were analyzed by Archimedes, ICP, XRD and FE-SEM. A Ti thin-film fabricated on a $Si/SiO_2$ substrate by a sputtering device (SRN-100) was analyzed by XRD, TEM, and SIMS. Density and grain size were up to 99% and below $40{\mu}m$, respectively. The specific resistivity of the optimized Ti target was $8.63{\times}10^{-6}{\Omega}{\cdot}cm$.

Photoluminescence properties of oxy-fluoride glass-ceramics of La2O3-CaF2-Al2O3-SiO2 system (La2O3-CaF2-Al2O3-SiO2 계 oxy-fluoride 결정화 유리의 광 발광 특성)

  • Ha, Taewan;Kang, Seunggu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.2
    • /
    • pp.84-88
    • /
    • 2021
  • The change of the photoluminescence properties of La2O3-CaF2-Al2O3-SiO2 glass-ceramics doped with rare earth material, that is used as laser and optical sensors, was analyzed according to heat treatment temperature. The heat treatment conditions for fabricating glass-ceramics were obtained through non-isothermal thermal analysis, and X-ray diffraction analysis was performed to determine the degree of crystal growth and kinds of crystal phases generated according to the heat treatment temperature. Using Scherrer's equation, it was predicted that crystals with a size of 25~40 nm would be generated inside the glass-ceramics. Photoluminescence (PL) analysis showed that the specimens heat-treated at 660℃ to 670℃ for 1 hour had the highest PL intensity. Also, from the CIE color coordinate analysis, all glass-ceramics specimens emitted red-orange light regardless of the heat treatment condition.

A Study on Derivation of Contact Heat Transfer Coefficient Between Die and Aluminum Billet in High Temperature Compression Process (고온 압축 공정에서 금형과 알루미늄 빌렛의 접촉 열전달 계수 도출에 관한 연구)

  • Jeon, H.W.;Suh, C.H.;Oh, S.G.;Kwon, T.H.;Kang, G.P.;Yook, H.S.
    • Transactions of Materials Processing
    • /
    • v.30 no.3
    • /
    • pp.142-148
    • /
    • 2021
  • In hot forging analysis, the interfacial heat transfer coefficient (IHTC) is a very important factor defining the heat flow between the die and the material. In particular, in the hot forging analysis of aluminum 6xxx series alloy, which are used in automobile parts, differences in load and microstructure occur due to changes in surface temperature according to the IHTC. This IHTC is not a constant value but changes depends on pressure. This study derived the IHTC under low load using aluminum 6082 alloy. An experiment was performed by fabricating a compression die, and a heat transfer analysis was performed based on the experimental data. The heat transfer analysis used DEFORM-2D, a commercial finite element analysis program. To derive the IHTC, heat transfer analysis was performed for the IHTC in the range of 10 to 50 kW/m2℃ at intervals of 10kW/m2℃. The heat transfer analysis results according to the IHTC and the actual experimental values were compared to derive the IHTC of the aluminum 6082 alloy under low load.

Li4SiO4 slurry conditions and sintering temperature for fabricating Li4SiO4 pebbles as tritium breeders for nuclear-fusion reactors

  • Young Ah Park;Ji Won Yoo;Yi-Hyun Park;Young Soo Yoon
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2966-2976
    • /
    • 2023
  • A tritium breeder is a lithium-based material capable of producing tritium. Many researchers designing nuclear-fusion energy are studying tritium production using pebbles, which are solid-type breeders. The sphericity and size of the pebbles are critical in obtaining pebbles with good tritium-breeding efficiency. Furthermore, tritium-release efficiency can be increased by using pebbles with appropriate porosities. Promising raw materials for tritium-breeding materials include Li4SiO4 and Li2TiO3. Li4SiO4 has a higher lithium density than Li2TiO3 and exhibits excellent tritium-breeding efficiency. However, it has the disadvantage of being easily decomposed during the Li4SiO4-green-pebble sintering process because of its low structural stability at high temperatures and high lithium density. In this study, we attempted to determine the optimal conditions for manufacturing Li4SiO4 pebbles using the droplet-freeze-drying method. The optimal Li4SiO4 slurry conditions and sintering temperatures were determined. The optimal Li4SiO4 slurry-fabrication conditions were 3 wt% polyvinyl alcohol and 75 wt% Li4SiO4 based on the deionized-water weight content. The sintering temperature at which Li4SiO4 did not decompose and exhibited the optimum porosity of 10.8% was 900 ℃.

Secondary Phase Control of Lithium Ion-Substituted Potassium Niobate Ceramics via Stoichiometry Modification (화학양론 변화를 통한 리튬 이온 치환 니오브산 칼륨 세라믹의 이차상 제어 연구)

  • Tae Soo Yeo;Ju Hyeon Lee;Wook Jo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.5
    • /
    • pp.533-540
    • /
    • 2024
  • In line with the development of electronic devices and technologies, the demand for improving ferroelectric materials' performance is increasing. Since K0.5Na0.5NbO3 (KNN), an eco-friendly ferroelectric material that does not use lead and has a high Curie temperature, it is attracting attention to its usability as a high-temperature dielectric, and various studies are being conducted to increase performance. In a KNN having a perovskite structure, there was a simulation result that the KNN has higher spontaneous polarization when the A-site in which sodium ions exist is replaced with lithium ions. If the simulation results can be proven experimentally, the application range of KNN-based ferroelectric materials will increase. To this end, we tried to manufacture a K1-xLixNbO3 (KLN) with high electrical characteristics by fabricating niobium-deficient and potassium-excessive compositions, which attempt was made to solve the stoichiometry problem by volatilization and suppress secondary phases. If KLN's secondary phase suppression and relative permittivity improvement are successful, it will contribute to meeting the demand for developing electronic devices.

Hybrid Powder-Extrusion Process Involving the Control of Temperature Dwelling Time for Fabricating Spur Gears with Required Properties (온도 유지시간 제어를 적용한 하이브리드 분말 압출 공정을 통한 요구 특성의 스퍼기어 제조)

  • Lee, Kyung-Hun;Hwang, Dae-Won;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.847-853
    • /
    • 2011
  • In this study, a hybrid powder-extrusion process involving the control of temperature dwelling time for improving the formability of Zn-22Al powder was developed and the effect of dwelling time on the mechanical properties of a spur gear with a pitch circle having a diameter of 1.8 mm was investigated. General extrusion experiments were carried out at different temperatures such as 290, 300, and $310^{\circ}C$. Spur gears with good qualities and without any surface defects were obtained in the case of extrusion temperature of $310^{\circ}C$ and ball-milling duration of 32 h. The Vickers hardness distribution was non-uniform, and after the sintering process, an internal crack was generated because of the different deformation energy between gear central part and teeth. To overcome the abovementioned problems, research on controlling the dwelling time of the extrusion temperature in the powder-extrusion process was carried out. Good-quality spur gears were obtained when the dwelling time was 15 min.

High rate deposition of poly-si thin films using new magnetron sputtering source

  • Boo, Jin-Hyo;Park, Heon-Kyu;Nam, Kyung-Hoon;Han, Jeon-Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.186-186
    • /
    • 2000
  • After LeComber et al. reported the first amorphous hydrogenated silicon (a-Si: H) TFT, many laboratories started the development of an active matrix LCDs using a-Si:H TFTs formed on glass substrate. With increasing the display area and pixel density of TFT-LCD, however, high mobility TFTs are required for pixel driver of TF-LCD in order to shorten the charging time of the pixel electrodes. The most important of these drawbacks is a-Si's electron mobiliy, which is the speed at which electrons can move through each transistor. The problem of low carier mobility for the a-Si:H TFTs can be overcome by introducing polycrystalline silicon (poly-Si) thin film instead of a-Si:H as a semiconductor layer of TFTs. Therefore, poly-Si has gained increasing interest and has been investigated by many researchers. Recnetly, fabrication of such poly-Si TFT-LCD panels with VGA pixel size and monolithic drivers has been reported, . Especially, fabricating poly-Si TFTs at a temperature mach lower than the strain point of glass is needed in order to have high mobility TFTs on large-size glass substrate, and the monolithic drivers will reduce the cost of TFT-LCDs. The conventional methods to fabricate poly-Si films are low pressure chemical vapor deposition (LPCVD0 as well as solid phase crystallization (SPC), pulsed rapid thermal annealing(PRTA), and eximer laser annealing (ELA). However, these methods have some disadvantages such as high deposition temperature over $600^{\circ}C$, small grain size (<50nm), poor crystallinity, and high grain boundary states. Therefore the low temperature and large area processes using a cheap glass substrate are impossible because of high temperature process. In this study, therefore, we have deposited poly-Si thin films on si(100) and glass substrates at growth temperature of below 40$0^{\circ}C$ using newly developed high rate magnetron sputtering method. To improve the sputtering yield and the growth rate, a high power (10~30 W/cm2) sputtering source with unbalanced magnetron and Si ion extraction grid was designed and constructed based on the results of computer simulation. The maximum deposition rate could be reached to be 0.35$\mu$m/min due to a high ion bombardment. This is 5 times higher than that of conventional sputtering method, and the sputtering yield was also increased up to 80%. The best film was obtained on Si(100) using Si ion extraction grid under 9.0$\times$10-3Torr of working pressure and 11 W/cm2 of the target power density. The electron mobility of the poly-si film grown on Si(100) at 40$0^{\circ}C$ with ion extraction grid shows 96 cm2/V sec. During sputtering, moreover, the characteristics of si source were also analyzed with in situ Langmuir probe method and optical emission spectroscopy.

  • PDF

Study on the Separation of N2/SF6 Mixture Gas Using Polyimide Hollow Fiber Membrane (폴리이미드 중공사 막을 이용한 N2/SF6 혼합기체 분리에 관한 연구)

  • Kim, Dae-Hoon;Kim, Guang-Lim;Jo, Hang-Dae;Park, Jong-Soo;Lee, Hyung-Keun
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.660-667
    • /
    • 2010
  • In this research polyimide, Matrimid 5218, hollow fiber membrane was used to recover sulfur hexafluoride($SF_6$) which is one of the six greenhouse gases from $N_2/SF_6$ mixture gas. Fibers were spun from using dry-wet phase inversion method. The module was manufactured by fabricating fibers after surface coating with silicone elastomer. The scanning electron microscopy(SEM) studies showed that the produced fibers typically had an asymmetric structure; a dense top layer supported by a sponge-like substructure. The developed module had a permeance of 0.78-1.36 GPU for $N_2$ with $N_2/SF_6$ selectivity of 2.44-5.08 at various pressure and temperature. For recovery of $SF_6$, a membrane module and 10 vol.% $SF_6$ from $N_2/SF_6$ mixture gas was used. The effects of various operating condition such as pressure, temperature, and retentate side flow rate were tested. When pressure and temperature were increased and retentate flow rate was decreased, the $SF_6$ purity in recovered gas was increased up to 37.5 vol.% with decreasing recovery ratio. When retentate flow rate was increased pressure and temperature was decreased, the $SF_6$ recovery ratio in retentate side was increased up to 89% with decreasing the $SF_6$ purity in retentate side.

$TiO_2$ Thin Film Patterning on Modified Silicon Surfaces by MOCVD and Microcontact Printing Method

  • 강병창;이종현;정덕영;이순보;부진효
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.77-77
    • /
    • 2000
  • Titanium oxide (TiO2) thin films have valuable properties such as a high refractive index, excellent transmittance in the visible and near-IR frequency, and high chemical stability. Therefore it is extensively used in anti-reflection coating, sensor, and photocatalysis as electrical and optical applications. Specially, TiO2 have a high dielectric constant of 180 along the c axis and 90 along the a axis, so it is highlighted in fabricating dielectric capacitors in micro electronic devices. A variety of methods have been used to produce patterned self-assembled monolayers (SAMs), including microcontact printing ($\mu$CP), UV-photolithotgraphy, e-beam lithography, scanned-probe based micro-machining, and atom-lithography. Above all, thin film fabrication on $\mu$CP modified surface is a potentially low-cost, high-throughput method, because it does not require expensive photolithographic equipment, and it produce micrometer scale patterns in thin film materials. The patterned SAMs were used as thin resists, to transfer patterns onto thin films either by chemical etching or by selective deposition. In this study, we deposited TiO2 thin films on Si (1000 substrateds using titanium (IV) isopropoxide ([Ti(O(C3H7)4)] ; TIP as a single molecular precursor at deposition temperature in the range of 300-$700^{\circ}C$ without any carrier and bubbler gas. Crack-free, highly oriented TiO2 polycrystalline thin films with anatase phase and stoichimetric ratio of Ti and O were successfully deposited on Si(100) at temperature as low as 50$0^{\circ}C$. XRD and TED data showed that below 50$0^{\circ}C$, the TiO2 thin films were dominantly grown on Si(100) surfaces in the [211] direction, whereas with increasing the deposition temperature to $700^{\circ}C$, the main films growth direction was changed to be [200]. Two distinct growth behaviors were observed from the Arhenius plots. In addition to deposition of THe TiO2 thin films on Si(100) substrates, patterning of TiO2 thin films was also performed at grown temperature in the range of 300-50$0^{\circ}C$ by MOCVD onto the Si(100) substrates of which surface was modified by organic thin film template. The organic thin film of SAm is obtained by the $\mu$CP method. Alpha-step profile and optical microscope images showed that the boundaries between SAMs areas and selectively deposited TiO2 thin film areas are very definite and sharp. Capacitance - Voltage measurements made on TiO2 films gave a dielectric constant of 29, suggesting a possibility of electronic material applications.

  • PDF

$H_{2}S$ Removal and $CO_{2}/CH_{4}$ Separation of Ternary Mixtures Using Polyimide Hollow Fiber Membrane (폴리이미드 중공사막을 이용한 혼합기체로부터 $H_{2}S$ 제거 및 $CO_{2}/CH_{4}$ 분리에 관한 연구)

  • Park, Bo-Ryoung;Kim, Dae-Hoon;Jo, Hang-Dae;Seo, Yong-Seog;Hwang, Taek-Sung;Lee, Hyung-Keun
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.250-255
    • /
    • 2011
  • In this study, by using the polymeric membrane separation process, the $CO_{2}/CH_{4}$ separation and $H_{2}S$ removal from biogas were performed in order to $CH_{4}$ purification and enrichment for the fuel cell energy source application. Fibers were spun by dry/wet phase inversion method. The module was manufactured by fabricating fibers after surface coating with silicone elastomer. The scanning electron microscopy(SEM) studies showed that the produced fibers typically had an asymmetric structure; a dense top layer supported by a porous, sponge substructure. The permeance of $CO_{2}$ and $CO_{2}/CH_{4}$ selectivity increased with pressure and temperature. Mixture gas with increasing pressure and temperature, removal efficiency of the $CO_{2}$ and $H_{2}S$ were decreased while concentration of $CH_{4}$ was increased up to 100%. When retentate flow rate was increased with the decreasing of pressure and temperature the $CH_{4}$ recovery ratio in retentate side was increased while the $CH_{4}$ purity in retentate side was decreased.