시선 위치 추적이란 현재 사용자가 쳐다보고 있는 위치를 컴퓨터 시각 인식 방법을 이용하여 파악하는 연구이다. 일반적으로 사용자가 모니터 상의 한 위치를 쳐다보기 위해서는 얼굴 및 눈동자를 동시에 움직이는 경향이 있다. 기존의 시선 위치 추적 시스템은 사용자의 얼굴 전체를 취득할 수 있는 단 하나의 광각 카메라를 이용하여 사용자의 얼굴 및 눈동자 움직임을 추적하였다. 그러나 이러한 경우, 광각 카메라 내에 포함된 눈동자 영상의 해상도가 많이 떨어져서 사용자의 눈동자 움직임을 정확하게 추적하지 못하는 문제점이 있었다. 그러므로 이 논문에서는 얼굴 영상을 취득하기 위한 광각 카메라 및 눈 영역을 확대하여 취득하는 협각 카메라, 즉 2개의 카메라를 이용하여 시선 위치추적 시스템을 구현하였다. 또한, 얼굴의 움직임 시 전체적인 위치가 변화될 눈동자의 움직임을 정확히 추적하기 위해, 협각 카메라에는 광각 카메라에서 추출된 얼굴 특징점의 위치를 기반으로 한 자동 초점 및 자동 상하/좌우 회전 기능이 포함되어 있다. 실험 결과, 얼굴 및 눈동자 움직임에 의한 모니터상의 시선 위치 정확도는 실험자가 눈동자는 고정으로 하고 얼굴만 움직여서 쳐다보는 경우에 약 3.1cm, 흐리고 얼굴 및 눈동자를 같이 움직여서 쳐다보는 경우에 약 3.57cm의 최소 자승 에러성능을 나타냈다. 처리 속도도 Pentium-IV 1.8 GHz에서 약 30ms 이내의 처리 속도를 나타냈다.
Gaze detection is to find out the position on a monitor screen where a user is looking at, using the computer vision processing. This System can help the handicapped to use a computer, substitute a touch screen which is expensive, and navigate the virtual reality. There are basically two main types of the study of gaze detection. The first is to find out the location by face movement, and the second is by eye movement. In the gaze detection by eye movement, we find out the position with special devices, or the methode of image processing. In this paper, we detect not the iris but the pupil from the image captured by Head-Mounted Camera with infra-red light, and accurately locate the position where a user looking at by A(fine Transform.
Among the several types of 3D display methods the autostereoscopic method has an advantage that we can enjoy a 3D image without any additional device but the method has a disadvantage of a narrow viewing zone so that the moving viewer coannot see the 3D image continuously. This disadvantage can be overcome with the detectioni of viewer's positional movement by head tracking. In this paper we suggest a method of detecting the position of the moving viewer's two eyes by using images obtained through a color CCD camera, The suggested method consists of the preprocessing process and the eye-detection process. Through the experiment of applying the suggested method we were able to find the accurate two-eyes position for 78 images among 80 sample input images of 8 different men with the processing speed of 0.39 second/frame using a personal computer.
This paper presents the method for the decision of eye states using the eye blink in video sequences. The entire procedure consists of two steps: in the first step, the accurate eye position is found in the input image by using symmetry information of faces and projection, and in the second step, the eye open/close state is decided by the horizontal and vertical projection. The method in this paper is also used for detecting drivers' fatigue in the drowsiness detection system.
Eye gaze positions evaluation on computer screen uses the human eye as an input device for computer systems is that it gives low resolution. We proposes a method to determine the eye gaze positions on the screen by using two-eye displacements as the information for mapping, and the perspective projection is applied to map the displacements to a position on a computer screen. The experiments were performed on 20 persons and a 17-inch monitor is used with the screen resolution of 1024x768 pixels. Gaze detection error was 3.18 cm (RMS error), with screen is divided into 5x8 and 7x10 positions on a 17-inch monitor. The results showed 100% and 96% correction, respectively.
시선 위치 추적이란 현재 사용자가 응시하고 있는 위치를 컴퓨터 시각 인식 방법에 의해 파악하는 연구이다. 이러한 시선 위치 추적 기술은 많은 응용 분야를 가지고 있는데, 그 대표적인 예로는 양 손을 사용하지 못하는 심신 장애자를 위한 컴퓨터 인터페이스 및 3차원 시뮬레이터 프로그램에서 사용자의 시선 위치에 따른 화면 제어 등이 있다. 이 논문에서는 적외선 조명이 부착된 단일 카메라를 이용한 컴퓨터 비전 시스템으로 시선 위치 추적 연구를 수행하였다. 사용자의 시선 위치를 파악하기 위해서는 얼굴 특징점의 위치를 추적해야하는데, 이를 위하여 이 논문에서는 적외선 기반 카메라와 SVM(Support Vector Machine) 알고리즘을 사용하였다. 사용자가 모니터상의 임의의 지점을 쳐다볼 때 얼굴 특징점의 3차원 위치는 3차원 움식임량 추정(3D motion estimation) 및 아핀 변환(affine transformation)에 의해 계산되어 질 수 있다. 얼굴 특징점의 변화된 3차원 위치가 계산되면, 이로부터 3개 이상의 얼굴 특징점으로부터 생성되는 얼굴 평면 및 얼굴 평면의 법선 벡터가 구해지게 되며, 이러한 법선 벡터가 모니터 스크린과 만나는 위치가 사용자의 시선위치가 된다. 또한, 이 논문에서는 보다 정확한 시선 위치를 파악하기 위하여 사용자의 눈동자 움직임을 추적하였으면 이를 위하여 신경망(다층 퍼셉트론)을 사용하였다. 실험 결과, 얼굴 및 눈동자 움직임에 의한 모니터상의 시선 위치 정확도는 약 4.8㎝의 최소 자승 에러성능을 나타냈다.
본 논문에서는 얼굴영상에서 눈과 아이라인을 추출하는 방법을 제안한다. 기존의 논문은 눈동자의 위치를 추출하는 것이 대부분이나, 본 논문에서는 눈의 위치뿐만 아니라 아이라인까지 추출함으로써 얼굴 응용분야에 다양하게 적용될 수 있다. 입력영상은 스마트폰 카메라로 정면을 찍은 얼굴 사진을 실험 자료로 하였으며, 기본적으로 영상은 1명의 얼굴로 제한하며, 배경은 어느 곳에서나 찍을 수 있고, 조명의 상태는 일정하지 않으며, 인종에 관한 제약은 없다. 제안하는 방법은 입력영상에서 Harr 분류기를 이용하여 얼굴후보영역 추출하고 얼굴 후보영역에서 눈의 위치 후보영역을 설정하였다. 눈의 후보영역에서 팽창연산을 이용하여 값이 큰 부분을 추출하고, 이 영상을 지역적인 이진화를 하여 눈과 눈썹을 분리하는 방법을 제안하였다. 그 후 Hsu가 제안한 EyemapC를 이용한 영상을 이진화하여 눈이 있는 부분과 눈이 없는 부분을 분리한 후, 그 눈의 윤곽선을 추출하고 최적타원 추정을 이용하여 아이라인을 검출하였다.
The size of a display is large, The form becoming various of that do not apply to previous methods of gaze tracking and if setup gaze-track-camera above display, can solve the problem of size or height of display. However, This method can not use of infrared illumination information of reflected cornea using previous methods. In this paper, Robust pupil detecting method for eye's occlusion, corner point of inner eye and center of pupil, and using the face pose information proposes a method for calculating the simply position of the gaze. In the proposed method, capture the frame for gaze tracking that according to position of person transform camera mode of wide or narrow angle. If detect the face exist in field of view(FOV) in wide mode of camera, transform narrow mode of camera calculating position of face. The frame captured in narrow mode of camera include gaze direction information of person in long distance. The method for calculating the gaze direction consist of face pose estimation and gaze direction calculating step. Face pose estimation is estimated by mapping between feature point of detected face and 3D model. To calculate gaze direction the first, perform ellipse detect using splitting from iris edge information of pupil and if occlusion of pupil, estimate position of pupil with deformable template. Then using center of pupil and corner point of inner eye, face pose information calculate gaze position at display. In the experiment, proposed gaze tracking algorithm in this paper solve the constraints that form of a display, to calculate effectively gaze direction of person in the long distance using single camera, demonstrate in experiments by distance.
본 논문에서는 다양한 조명하에서의 단일 얼굴 영상에 대해 유전자 알고리즘과 형판 정합을 이용하여 빠르게 눈동자를 검출하는 방법을 제안한다. 유전 알고리즘을 이용한 기존의 눈동자 검출 방법은 초기 개체군의 위치에 민감하여 낮은 눈 검출율을 보이며, 도한 그 결과가 일관적이지 않은 문제점을 갖는다. 이와 같은 문제점을 해결화기 위해 얼굴영상에서 지역적 최소치를 추출하고 형판과 가장 높은 적합도를 가지는 개체들로 초기 개체군을 생성 하였다. 각각의 개체는 형판의 기하학적 변환 정보로 구성되며, 형판 정합에 의해 눈동자가 검출된다. 실험을 통하여 본 논문에서 제안한 눈 후보 검출을 통하여 단일 영상에서도 눈 검출의 정확도와 높은 검출률을 확인하였다.
Information about retinal blood vessels can be used in grading disease severity or as part of the process of automated diagnosis of diseases with ocular menifestations. In this paper, we address the problem of detecting retinal blood vessels and optic disk (papilla) in eye-fundus images. We introduce an algorithm for feature extraction based on Fuzzy Clustering algorithm (fuzzy c-means). A method of finding the optic disk (papilla) is proposed in the eye-fundus images. Additionally, the inrormations such as position and area of the optic disk are extracted. The results are compared to those obtained from other methods. The automatic detection of retinal blood vessels and optic disk in the eye-rundus images could help physicians in diagnosing ocular diseases.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.