• Title/Summary/Keyword: extrusion processing

Search Result 334, Processing Time 0.034 seconds

Support-generation Method Using the Morphological Image Processing for DLP 3D Printer (DLP 3D 프린터를 위한 형태학적 영상처리를 이용한 서포터 생성 방법)

  • Lee, Seung-Mok;Kim, Young-Hyung;Eem, Jae-Kwon
    • The Journal of Korean Institute of Information Technology
    • /
    • v.15 no.12
    • /
    • pp.165-171
    • /
    • 2017
  • This paper proposes a method of support-generation using morphological image processing instead of geometric calculations. The geometric computational cost is dependent on the shape, but our method is independent on the shape. For obtaining the external support area for extrusion shape, we represents morphological operations between two sliced layer images and shows results of each operation stages. Internal support area is evaluated from erosion and opening operations with the sliced-layer image. In these support areas, the supporter image is generated using the designed support structures. Also, we made a DLP printer and the STL model included supporter-structure is printed by the DLP printer. We confirmed the necessity of support-generation method with the support structures individually dependent on materials by looking at the printed results.

Effects of Sodium Sulfite and Extrusion on the Nutritional Value of Soybean Products for Nursery Pigs

  • Burnham, L.L.;Kim, I.H.;Kang, J.O.;Rhee, H.W.;Hancock, J.D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.11
    • /
    • pp.1584-1592
    • /
    • 2000
  • Three hundred nursery pigs were used in two growth assays (avg initial BW of 6.5 and 6.0 kg, respectively) to determine the effects of sodium sulfite ($Na_2SO_3$) as an extrusion aid for soy products used in diets for weanling pigs. In Exp. 1, treatments were arranged as $3{\times}2$ factorial with main effects of soy product [soybean meal (SBM), extruded SBM, and dry-extruded whole soybeans (DEWS)] and concentration of $Na_2SO_3$ (0 and 10 g/kg of soy product). The extruded SBM and DEWS treatments were processed in a dry extruder ($Insta-Pro^{(R)} $, Triple F Nutrition, Des Moines, IA) with barrel temperatures and throughputs of $169^{\circ}C$ and 578 kg/h, and $147^{\circ}C$ and 598 kg/h, respectively. All diets were formulated to 3.5 Mcal/kg DE, with 0.92% lysine for d 0 to 14, and 0.76% lysine for d 14 to 28. For d 0 to 14, there was a tendency for pigs fed diets with $Na_2SO_3$ to have greater ADG (p<0.08), and pigs fed SBM to have greater ADFI (p<0.02), thus pigs fed the extruded soy products has 15% greater gain/feed than those fed SBM (p<0.007). For d 14 to 28, there were no differences in ADG or gain/feed among pigs fed diets with SBM and those fed diets with the extruded soy products (p>0.15). However, pigs fed DEWS had greater ADG than pigs fed extruded SBM, and pigs fed $Na_2SO_3$ had greater ADG and ADFI compared to those not fed $Na_2SO_3$ (p<0.02 and 0.08, respectively). The positive response in ADG and gain/feed to the addition of $Na_2SO_3$ resulted with SBM and extruded SBM treatments, and not with DEWS (interaction effect, p<0.04). Overall (d 0 to 28), pigs fed DEWS had greater ADG (p<0.01) and gain/feed (p<0.08) than pigs fed extruded SBM. Also pigs fed diets with $Na_2SO_3$ had greater ADG, ADFI, and gain/feed compared to those fed diets without $Na_2SO_3$ (p<0.002, 0.04, and 0.04, respectively). Exp. 2 was designed as a $2{\times}3$ factorial with main effects of soy product (SBM and DEWS) and concentration of $Na_2SO_3$ (none, 7.5, and 15.0 g/kg of soy product). As in Exp. 1, all diets were formulated to 3.5 Mcal/kg DE, with 0.92% lysine for d 0 to 13, and 0.76% lysine for d 13 to 53. At a constant processing temperature (148 to $149^{\circ}C$, $Na_2SO_3$ increased throughput of the extruder (578, 595, and 602 kg/h for the 0, 7.5, and 15.0 g/kg additions, respectively). For d 0 to 13, treatment had no effect on ADG or ADFI, but gain/feed decreased for pigs fed SBM with increasing concentrations of $Na_2SO_3$, and increased for pigs fed DEWS with increasing concentrations of $Na_2SO_3$ (SBM vs DEWS sulfite quadratic interaction, p<0.03). For d 13 to 35, pigs fed DEWS had greater ADG (p<0.01) and gain/feed (p<0.001) than pigs fed SBM. Also, ADFI decreased and gain/feed increased with increasing concentrations of $Na_2SO_3$ (linear effects, p<0.04 and 0.01, respectively). Overall, pigs fed the diets with DEWS had greater ADG and gain/feed than pigs fed SBM (p<0.003 and 0.002, respectively), and $Na_2SO_3$ tended to decrease ADFI and increase gain/feed (linear effects, p<0.07 and 0.06, respectively). In conclusion, pigs fed DEWS had greater rate and efficiency of gain than pigs fed SBM. Also, adding $Na_2SO_3$ prior to extrusion increased yield and feed efficiency.

Formation of Enzyme Resistant Starch by Extrusion Cooking of High Amylose Corn Starch (고아밀로즈 옥수수전분의 압출성형에 의한 난소화성화)

  • Kim, Ji-Yong;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.1128-1133
    • /
    • 1998
  • Extrusion cooking treatment was compared with autoclaving/cooling treatment for formation of enzyme resistant starch of high amylose corn starch (HACS). Effects of barrel temperature $(100^{\circ}C,\;120^{\circ}C,\;140^{\circ}C)$ and feed moisture content (25%, 35%, 45%) on extrusion processing in a co-rotating twin-screw extruder under fixed screw speed (100 rpm) were investigated by measuring enzyme resistant starch (RS) yield. RS yield were estimated by in-vitro pancreatin digestion method and enzymatic-gravimetric method using termamyl. Barrel temperature and yield of RS were negatively correlated and feed moisture content and yield of RS was positively correlated as determined by in-vitro pancreatin method. The highest yield (38.4%) of RS was obtained from HACS extrudate processed at the barrel temperature of $100^{\circ}C$ and the feed moisture content of 45%, while the yield of RS by 5 times of autoclaving/cooling was 25%. The yield of RS by in vitro pancreatin digestion method was 20.7% with high amylose corn starch and 8.2% with ordinary corn starch (CS), respectively, under the same extrusion condition (barrel temperature $120^{\circ}C$, feed moisture content 35%). At the same condition, the yields of RS by enzyme-gravimetric method were 14.6% with HACS and 6.8% with CS, respectively. The yield of RS increased during the storage at $4^{\circ}C$ for 4 weeks and the highest yield (60%) was obtained by the storage of HACS extrudates extruded at $100^{\circ}C$ and 45% feed moisture content.

  • PDF

Processing Effects of Feeds in Swine - Review -

  • Chae, B.J.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.5
    • /
    • pp.597-607
    • /
    • 1998
  • Processing is generally employed to alter the physical and chemical properties of feeds used in pig diets, using hammer/roller mills, pellet mills and extruders/expanders. The reported optimum particle sizes of corn are approximately $500{\mu}m$, $500-700{\mu}m$, $400-600{\mu}m$, for nursery, growing-finishing, and breeder pigs respectively. Optimum particle size of grains are affected by diet complexity. There was a trend towards reducing particle size in order to increase ADG in pigs fed a simple diet, though such was not the case for pigs fed a complex diet. Uniformity of particle size also affects the nutritional values of swine feeds. Uniform particle sizes would consistently give greater nutrient digestibilities. In terms of pellet quality, it is reported that a higher incidence of fmes in pelleted feeds has a direct correlation with poorer feed conversion ratio in pigs. Particle and pellet sizes are also very important for pelleting in terms of grinding, digestibility, stomach ulceration and pellet durability. A particle size of $600{\mu}m$, or slightly less, seemed optimal for com in fmishing pigs, and the 5/32 in. diameter pellets supported the best efficiencies of gain during nursery and finishing phases. Extruder and/or expander processes would allow the feed industry an increased flexibility to utilize a wider spectrum of feed ingredients, and improve pellet quality of finished feeds. It would appear that extruded or expanded diets containing highly digestible ingredients have little effect on the growth performance of pigs, and the feeding values of the feeds over pelleted diets were not improved as pigs grew. The extruder or expander is much more effective than a pelletizer in salmonella control. Gastric ulcerations and/or keratinizations were consistently reported in pigs fed mash and processed diets containing finely ground grains, whereas carcass quality was not affected by diet processing methods such as pelleting, extruding or expanding. In corn- or sorghum-based diets, the electrical energy consumption is 4-5 times higher in the expanding than in the pelleting process. But the expander's processing cost was half of that shown by an extruder. Finally, the decision of which feed processing technology to adopt would depend on the processing cost, and any potential improvement in growth performance and digestibilities of nutrients should offset the increased operating and capital costs related to the extruder/expander technology over mash or pelleting processes in pigs.

Multi-stage forming analysis of milli component for improvement of forming accuracy (밀리부품 성형 정밀도 향상을 위한 다단계 미세성형 해석)

  • Yoon, J.H.;Huh, H.;Kim, S.S.;Choi, T.H.;Na, G.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.97-100
    • /
    • 2003
  • Globally, the various machine components, as in electronics and communications, are demanded to being high-performance and micro-scale with abrupt development of the fields of computers, mobile communications. As this current tendency, production of the parts that must have high accuracy, so called milli-structure, are accomplished by the method of top-down, differently as in the techniques of MEMS, NANO. But, in the case of milli-structure, production procedure is highly costs, difficult and demands more accurate dimension than the conservative forming, processing technique. In this paper, forming analysis of the micro-former as the milli-structure are performed and then calculate the punch force etc. This information calculated is applied to decide the forming capacity of micro-former and design the process of forming stage, dimension of dies in another forming bodies. And, for the better precise forming analysis, elasto-plastic analysis is to be performed, then the consideration about effect of elastic recovery when punch and die are unloaded, have to be discussed in change of dimensions.

  • PDF

Optimization of Processing Conditions and Mechanical Properties in Polymer Nanocomposite (고분자 나노복합재료의 가공조건 및 물성 최적화)

  • Nam, Byeong-Uk;Hong, Chae-Hwan;Hwang, Tae-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.73-80
    • /
    • 2007
  • Nanocomposites are used as a new class of polymer system and many researchers have been interested in the clay nanocomposite because of its good mechanical properties, heat resistance, flame retardancy, and barrier property. Modified layered silicates as fillers are dispersed at a nanometer-level within a polymer matrix and then new extraordinary properties are observed. In this study, polypropylene/clay nanocomposites were prepared in a twin screw extruder by the melt compounding method. In order to increase the compatibility of PP with the clay, the MAPP was used as a compatibilizer. And organic modified clays were used as a nanometric filler during the melt extrusion. Through the analysis of SAXS, WAXS, the dispersion of clay was investigated. These nanocomposites compared with a neat polypropylene/talc composite have high modulus, low toughness, and reduced shrinkage at the stable dispersion.

Pigment Influence of High Density Polyethylene Electrical Strength (고밀도 폴리에틸렌의 전계 세기의 영향)

  • Choi, Yong-Sung;Wee, Sung-Dong;Hwang, Jong-Sun;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.50-53
    • /
    • 2008
  • In this work, the $TiO_2$ pigment influence in HDPE dielectric strength was analyzed. Chemical and structural characterizations were made to identify changes during the processing and your influence in the electrical properties. Formulations containing 0, 0.5, 1, 2.5, 4 and 6 of titanium dioxide were processed by extrusion and injection molding with stabilization-antioxidants, ultraviolet stabilizers and plasticizers. The electrical strength tests were analyzed by the statistical distribution of Weibull, and the maximum likelihood method. The high concentrations present lower values to electrical strength. The $\beta$ parameter could be using to insulator particles dispersion. The $TiO_2$ concentration variation shows that these incorporations implicate strength values increase has a maximum (5,35MV/cm). High pigment concentration induces a little falls in property values. Observing the $\beta$ parameter, minimum experiment electric field (Ebmin) and electric strength value, found that the best electric perform formulation was the formulation with 2.5% $TiO_2$ weight.

  • PDF

Processing and Properties of Engine Valve-shaped TiAl-Mn Intermetallics by Reactive Sintering (반응소결법에 의해 엔진밸브 형상으로 제조한 TiAl-Mn 금속간화합물의 특성)

  • 김영진
    • Journal of Powder Materials
    • /
    • v.4 no.4
    • /
    • pp.243-251
    • /
    • 1997
  • Engine valve-shaped TiAl-Mn intermetallics containing 43.5 to 47.5at%Al (Mn/Al=0.036) are successively fabricated by reactive sintering the elemental powder mixtures near-net shaped by extrusion and die forging. A duplex structure consisted of lamellar grains and equiaxed $\gamma$ grains is developed for all compositions, and the areal fraction of the lamellar grains(or equiaxed $\gamma$ grains) decreases (or increases) with increasing Al content. As Al content increased, the elongation increases with accompanying decrease in yield strength and ultimate tensile strength at both room temperature and 80$0^{\circ}C$. This indicates that the suitable composition is Ti-45at%Al-1.6at%Mn in considering the balance of ambient and elevated tensile properties. The reactive-sintered Ti-45Al-1.6Mn alloy shows superior oxidation resistance not only to the plasma arc melted one but also to the heat resistance steel STR35(representative exhaust valve head material for automotive engine). The reactive-sintered Ti-45Al-1.6Mn alloy coated with an oxidizing scale exhibits a better wear resistance than induction hardened martensitic steel STR11(representative exhaust valve tip material for automotive engine).

  • PDF

The tensile deformation and fracture behavior of a magnesium alloy nanocomposite reinforced with nickel

  • Srivatsan, T.S.;Manigandan, K.;Godbole, C.;Paramsothy, M.;Gupta, M.
    • Advances in materials Research
    • /
    • v.1 no.3
    • /
    • pp.169-182
    • /
    • 2012
  • In this paper the intrinsic influence of micron-sized nickel particle reinforcements on microstructure, micro-hardness tensile properties and tensile fracture behavior of nano-alumina particle reinforced magnesium alloy AZ31 composite is presented and discussed. The unreinforced magnesium alloy (AZ31) and the reinforced nanocomposite counterpart (AZ31/1.5 vol.% $Al_2O_3$/1.5 vol.% Ni] were manufactured by solidification processing followed by hot extrusion. The elastic modulus and yield strength of the nickel particle-reinforced magnesium alloy nano-composite was higher than both the unreinforced magnesium alloy and the unreinforced magnesium alloy nanocomposite (AZ31/1.5 vol.% $Al_2O_3$). The ultimate tensile strength of the nickel particle reinforced composite was noticeably lower than both the unreinforced nano-composite and the monolithic alloy (AZ31). The ductility, quantified by elongation-to-failure, of the reinforced nanocomposite was noticeably higher than both the unreinforced nano-composite and the monolithic alloy. Tensile fracture behavior of this novel material was essentially normal to the far-field stress axis and revealed microscopic features reminiscent of the occurrence of locally ductile failure mechanisms at the fine microscopic level.

Study on the Lubrication Characteristics at the Elevated Temperature in Hot Forging Test with Extruded AZ80 Mg Alloy (AZ80 압출재를 이용한 고온단조 윤활특성 분석)

  • Yoon, J.H.;Lee, S.I.;Jeon, H.W.;Lee, J.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.2
    • /
    • pp.108-113
    • /
    • 2013
  • This paper demonstrates the lubricant performance in T-shape hot forging of Mg alloys. This processes induces complex plastic material flow of the initial billet such as simultaneous compression and extrusion deformations. Five lubricants with different amounts of graphite are applied to the T-shape forging at temperatures of 300 and $350^{\circ}C$. As the amount of graphite in the lubricant increases, the extruded depth gradually increases, which improves hot forgeability for Mg alloys. However, the lubricant performance decreases as forging temperature increases from 300 to $350^{\circ}C$. As the punch stroke increases, forgeability is considerably influenced by the lubricant. Thus, the selection of lubricants in hot forging of Mg alloys is critical when plastic deformation is severe.