• Title/Summary/Keyword: extreme strain

Search Result 118, Processing Time 0.024 seconds

Mechanism of Cadmium Accumulation into the Cell of Cadmium-Ion Tolerant Yeast (카드뮴 내성 효모의 세포내 카드뮴 축적 기작)

  • 유대식;송형익;정기택
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.3
    • /
    • pp.233-238
    • /
    • 1990
  • The mechanism of intracellular accumulation of cadmium in a cadmium-ion tolerant yeast, Hansenula ammala B-7, which is an extreme cadmium tolerant strain and has the ability to take up a large amount of cadmium was investigated. The amounts of cadmium taken up by the scalded yeast cells were 2 to 3 times more than the value of the living cells. The living Hansenula anomala B-7 cells adsorbed 74% of cadmium taken up onto the other layer of the cells and 26% of it accumulated inside the cells. But the scalded cells adsorbed 98.3% of cadmium taken up and accumulated 1.7% of it inside the cells. A cadmium uptake and its accumulation were accelerated up to 162.3% and 275.4% by Triton X-100 in the living cells, respectively. Whereas in the scalded cell cadmium uptake was not affected by Triton X-100. Furthermore the cadmium uptake and its accumulation were strongly inhibited by metabolic inhibitors like 2,4-dinitrophenol, sodium azide and potassium cyanide in the living cells, but in the scalded cells cadmium uptake was not affected by metabolic inhibitors. These results suggested that the intracellular accumulation of cadmium by the cadmium-tolerant Hansenula anomala B-7 cells was apparently dependent of biological activity, and also gave evidence of the existance of energy-dependent system.

  • PDF

A Study on behavior of Slope Failure Using Field Excavation Experiment (현장 굴착 실험을 통한 사면붕괴 거동 연구)

  • Park, Sung-Yong;Jung, Hee-Don;Kim, Young-Ju;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.5
    • /
    • pp.101-108
    • /
    • 2017
  • Recently, the occurrence of landslides has been increasing over the years due to the extreme weather event. Developments of landslides monitoring technology that reduce damage caused by landslide are urgently needed. Therefore, in this study, a strain ratio sensor was developed to predict the ground behavior during the slope failure, and the change in surface ground displacement was observed as slope failed on the field model experiment. As a result, in the slope failure, the ground displacement process increases the risk of collapse as the inverse displacement approaches zero. It is closely related to the prediction of precursor. In all cases, increase in displacement and reverse speed of inverse displacement with time was observed during the slope failure, and it is very important event for monitoring collapse phenomenon of risky slopes. In the future, it can be used as disaster prevention technology to contribute in reduction of landslide damage and activation of measurement industry.

The development of a field measurement instrumentation system for low-rise construction

  • Porterfield, Michelle L.;Jones, Nicholas P.
    • Wind and Structures
    • /
    • v.4 no.3
    • /
    • pp.247-260
    • /
    • 2001
  • In the last three decades several comprehensive field measurement programs have produced significant insight into the wind effects on low-rise structures. The most notable and well published of these efforts are measurements being collected at the Wind Engineering Field Laboratory (WERFL) at Texas Tech University, measurements on low-rise structures in Silsoe, England and measurements on groups of low-rise structures collected in Aylesbury, England. Complementary to these efforts, an additional full-scale field investigation program has recently collected meteorological, pressure, strain and displacement data on a low-rise structure in Southern Shores, North Carolina. To date over seventy-five hundred data sets have been collected at the Southern Shores site in a variety meteorological conditions up to and including hurricane-force winds. This paper provides details of the system, its development, and preliminary assessment of its performance. A description of the field site, the instrumented structure, and the instrumentation system is provided. In addition, an example of the data collected during three hurricanes is presented. The primary goal of this paper is to provide the reader with the necessary technical details to appropriately interpret data from this experiment, which will be presented in future publications currently under development.

Complete genome sequence of Spirosoma montaniterrae DY10T isolated from gamma-ray irradiated soil (감마선 조사된 토양에서 분리된 박테리아 Spirosoma montaniterrae DY10T 의 완전한 게놈 서열)

  • Srinivasan, Sathiyaraj;Kang, Myung-Suk;Kim, Myung Kyum
    • Korean Journal of Microbiology
    • /
    • v.53 no.1
    • /
    • pp.61-63
    • /
    • 2017
  • A Gram-negative, yellow-pigmented, long-rod shaped bacterium Spirosoma montaniterrae $DY10^T$ was isolated from a soil sample collected at Mt. Deogyusan, Jeonbuk Province, Republic of Korea. Cells showed extreme gamma radiation resistance with the $D_{10}$ value of 12 KGy. The complete genome sequence of strain $DY10^T$ is consist of a circular chromosome (5,797,678 bp) encoding 5,116 genes, 9 rRNA genes and 39 tRNA genes. The genomic features contain the key enzymes for gamma and UVC radiation.

Numerical procedures for extreme impulsive loading on high strength concrete structures

  • Danielson, Kent T.;Adley, Mark D.;O'Daniel, James L.
    • Computers and Concrete
    • /
    • v.7 no.2
    • /
    • pp.159-167
    • /
    • 2010
  • This paper demonstrates numerical techniques for complex large-scale modeling with microplane constitutive theories for reinforced high strength concrete, which for these applications, is defined to be around the 7000 psi (48 MPa) strength as frequently found in protective structural design. Applications involve highly impulsive loads, such as an explosive detonation or impact-penetration event. These capabilities were implemented into the authors' finite element code, ParaAble and the PRONTO 3D code from Sandia National Laboratories. All materials are explicitly modeled with eight-noded hexahedral elements. The concrete is modeled with a microplane constitutive theory, the reinforcing steel is modeled with the Johnson-Cook model, and the high explosive material is modeled with a JWL equation of state and a programmed burn model. Damage evolution, which can be used for erosion of elements and/or for post-analysis examination of damage, is extracted from the microplane predictions and computed by a modified Holmquist-Johnson-Cook approach that relates damage to levels of inelastic strain increment and pressure. Computation is performed with MPI on parallel processors. Several practical analyses demonstrate that large-scale analyses of this type can be reasonably run on large parallel computing systems.

Remote Honey Bee Breeding Centre: A Case Study of Heligoland Island in Germany

  • Meyer-Rochow, V.B.;Jung, Chuleui
    • Journal of Apiculture
    • /
    • v.34 no.4
    • /
    • pp.285-293
    • /
    • 2019
  • The honey bee queen shows extreme polyandry and controlling the mating partners can only be possible either by artificial insemination or having remote isolated mating locations. Here we report on the German North Sea island of Heligoland. Because of its location 60 km from the mainland, the lack of a local population of honey bees, its size of just 1.4 ㎢ and suitable weather conditions during the months of May to July, it is considered an ideal location for controlled inseminations of high-quality virgin queen bees with drones deemed genetically superior to others. Methods how to rear virgin queen bees are described and information is provided on the numbers of queen bees, their supporting workers and drone bees that are taken to the island in the mating season. The bee most commonly involved in the Heligoland mating trials has become Apis mellifera carnica strain "Baltica". In one summer, for example, 80 virgin queens (belonging to beekeepers from nine different locations in northern Germany) each with about 600 worker bees plus two drone populations of around 2,000 drones were taken by ship to Heligoland. On their return to the mainland no later than 3.5 weeks after the mating exercise, the beekeepers could register a mating success rate of 80%. This information can help operation management of the new remote mating centre of Weedo Island, Jeonbuk in Korea, which is currently under construction.

Efficient determination of combined hardening parameters for structural steel materials

  • Han, Sang Whan;Hyun, Jungho;Cho, EunSeon;Lee, Kihak
    • Steel and Composite Structures
    • /
    • v.42 no.5
    • /
    • pp.657-669
    • /
    • 2022
  • Structural materials can experience large plastic deformation under extreme cyclic loading that is caused by events like earthquakes. To evaluate the seismic safety of a structure, accurate numerical material models should be used. For a steel structure, the cyclic strain hardening behavior of structural steel should be correctly modeled. In this study, a combined hardening model, consisting of one isotropic hardening model and three nonlinear kinematic hardening models, was used. To determine the values of the combined hardening model parameters efficiently and accurately, the improved opposition-based particle swarm optimization (iOPSO) model was adopted. Low-cycle fatigue tests were conducted for three steel grades commonly used in Korea and their modeling parameters were determined using iOPSO, which was first developed in Korea. To avoid expensive and complex low cycle fatigue (LCF) tests for determining the combined hardening model parameter values for structural steel, empirical equations were proposed for each of the combined hardening model parameters based on the LCF test data of 21 steel grades collected from this study. In these equations, only the properties obtained from the monotonic tensile tests are required as input variables.

Lateral impact behaviour of concrete-filled steel tubes with localised pitting corrosion

  • Gen Li;Chao Hou;Luming Shen;Chuan-Chuan Hou
    • Steel and Composite Structures
    • /
    • v.47 no.5
    • /
    • pp.615-631
    • /
    • 2023
  • Steel corrosion induces structural deterioration of concrete-filled steel tubes (CFSTs), and any potential extreme action on a corroded CFST would pose a severe threat. This paper presents a comprehensive investigation on the lateral impact behaviour of CFSTs suffering from localised pitting corrosion damage. A refined finite element analysis model is developed for the simulation of locally corroded CFSTs subjected to lateral impact loads, which takes into account the strain rate effects on concrete and steel materials as well as the random nature of corrosion pits, i.e., the distribution patterns and the geometric characteristics. Full-range nonlinear analysis on the lateral impact behaviour in terms of loading and deforming time-history relations, nonlinear material stresses, composite actions, and energy dissipations are presented for CFSTs with no corrosion, uniform corrosion and pitting corrosion, respectively. Localised pitting corrosion is found to pose a more severe deterioration on the lateral impact behaviour of CFSTs due to the plastic deformation concentration, the weakened confinement and the reduction in energy absorption capacity of the steel tube. An extended parametric study is then carried out to identify the influence of the key parameters on the lateral impact behaviour of CFSTs with localised pitting corrosion. Finally, simplified design methods considering the features of pitting corrosion are proposed to predict the dynamic flexural capacity of locally pitted CFSTs subjected to lateral impact loads, and reasonable accuracy is obtained.

Comparison of the Characteristics of Metal Membrane Pressure Sensors Depending on the Shape of the Piezoresistive Patterns (금속 멤브레인 압력 센서에서 압저항체 패턴 형태에 따른 특성 비교)

  • Jun Park;Chang-Kyu Kim
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.173-178
    • /
    • 2024
  • Development of pressure sensors for harsh environments with high pressure, humidity, and temperature is essential for many applications in the aerospace, marine, and automobile industries. However, existing materials such as polymers, adhesives, and semiconductors are not suitable for these conditions and require materials that are less sensitive to the external environment. This study proposed a pressure sensor that could withstand harsh environments and had high durability and precision. The sensor comprised a piezoresistor pattern and an insulating film directly formed on a stainless-steel membrane. To achieve the highest sensitivity, a pattern design method was proposed that considered the stress distribution in a circular membrane using finite element analysis. The manufacturing process involved depositing and etching a dielectric insulating film and metal piezoresistive material, resulting in a device with high linearity and slight hysteresis in the range of a maximum of 40 atm. The simplicity and effectiveness of this sensor render it a promising candidate for various applications in extreme environments.

Evaluating Impact Resistance of Externally Strengthened Steel Fiber Reinforced Concrete Slab with Fiber Reinforced Polymers (섬유 보강재로 외부 보강된 강섬유 보강 콘크리트 슬래브의 충격저항성능 평가)

  • Yoo, Doo-Yeol;Min, Kyung-Hwan;Lee, Jin-Young;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.293-303
    • /
    • 2012
  • Recently, as construction technology improved, concrete structures not only became larger, taller and longer but were able to perform various functions. However, if extreme loads such as impact, blast, and fire are applied to those structures, it would cause severe property damages and human casualties. Especially, the structural responses from extreme loading are totally different than that from quasi-static loading, because large pressure is applied to structures from mass acceleration effect of impact and blast loads. Therefore, the strain rate effect and damage levels should be considered when concrete structure is designed. In this study, the low velocity impact loading test of steel fiber reinforced concrete (SFRC) slabs including 0%~1.5% (by volume) of steel fibers, and strengthened with two types of FRP sheets was performed to develop an impact resistant structural member. From the test results, the maximum impact load, dissipated energy and the number of drop to failure increased, whereas the maximum displacement and support rotation were reduced by strengthening SFRC slab with FRP sheets in tensile zone. The test results showed that the impact resistance of concrete slab can be substantially improved by externally strengthening using FRP sheets. This result can be used in designing of primary facilities exposed to such extreme loads. The dynamic responses of SFRC slab strengthened with FRP sheets under low velocity impact load were also analyzed using LS-DYNA, a finite element analysis program with an explicit time integration scheme. The comparison of test and analytical results showed that they were within 5% of error with respect to maximum displacements.