• 제목/요약/키워드: extreme single events

검색결과 23건 처리시간 0.026초

연속적인 극한호우사상의 발생을 가정한 거대홍수모의 (Mega Flood Simulation Assuming Successive Extreme Rainfall Events)

  • 최창현;한대건;김정욱;정재원;김덕환;김형수
    • 한국습지학회지
    • /
    • 제18권1호
    • /
    • pp.76-83
    • /
    • 2016
  • 최근 연속적인 태풍에 의한 일련의 극한 호우 사상으로 홍수가 발생하였고, 이로 인해 인명과 막대한 재산피해가 발생하였다. 본 연구에서는 연속 호우 사상으로 인해 발생한 극한홍수를 거대홍수라고 정의하고, 일정 시간 간격으로 극한 호우 사상이 연속적으로 발생 될 수 있음을 가정하여 가상의 거대홍수 시나리오를 구성하였다. 최소 무강우 시간 결정(Inter Event Time Definition, IETD)방법을 사용하여 연속적인 강우의 시간 간격을 결정하였으며, IETD에 의해 산정된 시간 간격 안에서 호우 사상을 연속적으로 발생시켜 평창강 유역을 대상으로 거대홍수를 모의하였다. 즉, (1) 기록된 극한 호우 사상의 연속적인 발생 (2) 기왕 자료를 기반으로 빈도해석에 의해 산정된 설계 호우 사상의 연속적인 발생을 가정하여 거대홍수를 모의하였다. 연속 호우 사상으로 인한 거대홍수는 단일 호우 사상으로 인한 일반 홍수에 비해 6~17%의 홍수량이 증가하는 것으로 나타났다. 앞의 호우 사상으로 인한 홍수량에 비해 뒤에 오는 호우로 인한 홍수량의 증가는 많지 않지만, 연속적인 호우는 두 번의 홍수피해를 가져오므로 가상의 거대홍수로 인한 홍수 피해는 매우 클 것으로 판단된다. 따라서 본 연구와 같이 가상의 강우 시나리오를 통해 예상하지 못한 연속적인 홍수 재해와 같은 비상 상황에 대비할 방안을 마련할 필요가 있을 것으로 사료된다.

Mooring chain fatigue analysis of a deep draft semi-submersible platform in central Gulf of Mexico

  • Jun Zou
    • Ocean Systems Engineering
    • /
    • 제14권2호
    • /
    • pp.171-210
    • /
    • 2024
  • This paper focuses on the rigorous and holistic fatigue analysis of mooring chains for a deep draft semi-submersible platform in the challenging environment of the central Gulf of Mexico (GoM). Known for severe hurricanes and strong loop/eddy currents, this region significantly impacts offshore structures and their mooring systems, necessitating robust designs capable of withstanding extreme wind, wave and current conditions. Wave scatter and current bin diagrams are utilized to assess the probabilistic distribution of waves and currents, crucial for calculating mooring chain fatigue. The study evaluates the effects of Vortex Induced Motion (VIM), Out-of-Plane-Bending (OPB), and In-Plane-Bending (IPB) on mooring fatigue, alongside extreme single events such as 100-year hurricanes and loop/eddy currents including ramp-up and ramp-down phases, to ensure resilient mooring design. A detailed case study of a deep draft semi-submersible platform with 16 semi-taut moorings in 2,500 meters of water depth in the central GoM provides insights into the relative contributions of wave scatter diagram, VIMs from current bin diagram, the combined stresses of OPB/IPB/TT and extreme single events. By comparing these factors, the study aims to enhance understanding and optimize mooring system design for safety, reliability, and cost-effectiveness in offshore operations within the central GoM. The paper addresses a research gap by proposing a holistic approach that integrates findings from various contributions to advance current practices in mooring design. It presents a comprehensive framework for fatigue analysis and design optimization of mooring systems in the central GoM, emphasizing the critical importance of considering environmental conditions, OPB/IPB moments, and extreme single events to ensure the safety and reliability of mooring systems for offshore platforms.

An alternative approach to extreme value analysis for design purposes

  • Bardsley, Earl
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.201-201
    • /
    • 2016
  • The asymptotic extreme value distributions of maxima are a natural choice when designing against future extreme events like flood peaks or wave heights, given a stationary time series. The generalized extreme value distribution (GEV) is often utilised in this context because it is seen as a convenient single expression for extreme event analysis. However, the GEV has a drawback because the location of the distribution bound relative to the data is a discontinuous function of the GEV shape parameter. That is, for annual maxima approximated by the Gumbel distribution, the data is also consistent with a GEV distribution with an upper bound (no lower bound) or a GEV distribution with a lower bound (no upper bound). A more consistent single extreme value expression for design purposes is proposed as the Weibull distribution of smallest extremes, as applied to transformed annual maxima. The Weibull distribution limit holds here for sufficiently large sample sizes, irrespective of the extreme value domain of attraction applicable to the untransformed maxima. The Gumbel, Type 2, and Type 3 extreme value distributions thus become redundant, together with the GEV, because in reality there is only a single asymptotic extreme value distribution required for design purposes - the Weibull distribution of minima as applied to transformed maxima. An illustrative synthetic example is given showing transformed maxima from the normal distribution approaching the Weibull limit much faster than the untransformed sample maxima approach the normal distribution Gumbel limit. Some New Zealand examples are given with the Weibull distribution being applied to reciprocal transformations of annual flood maxima, where the untransformed maxima follow apparently different extreme value distributions.

  • PDF

Assessment and quantification of hurricane induced damage to houses

  • Chiu, Gregory L.F.;Wadia-Fascetti, Sara Jean
    • Wind and Structures
    • /
    • 제2권3호
    • /
    • pp.133-150
    • /
    • 1999
  • Significant costs to the public and private sectors due to recent extreme wind events have motivated the need for systematic post-hurricane damage data collection and analysis. Current post disaster data are collected by many different interested groups such as government agencies, voluntary disaster relief agencies, representatives of media companies, academicians and companies in the private sector. Each group has an interest in a particular type of data. However, members of each group collect data using different techniques. This disparity in data is not conducive to quantifying damage data and, therefore, inhibits the statistical and spatial description of damage and comparisons of damage among different extreme wind events. The data collection does not allow comparisons of data or results of analyses within a group and also prohibits comparison of damage data and information among different groups. Typically, analyses of data from a given event lead to different conclusion depending upon the definition of damage used by individual investigators and the type of data collected making it difficult for members of groups to compare the results of their analyses with a common language and basis. A formal method of data collection and analysis-within any single group-would allow comparisons to be made among different individuals, hazardous events and eventually among different groups, thus facilitating the management and reduction of damage due to future disaster. This research introduces a definition of damage to single family dwellings, and a common method of data collection and analysis suited for groups interested in regional characterization of damage. The current state-of-data is presented and a method for data collection is recommended based on these existing data collection methods. A fixed-scale damage index is proposed to consider the damage to a dwelling's feature. Finally, the damage index is applied to three dwellings damaged by Hurricane Iniki (1992). The damage index reflects the reduced functionality of a structure as a single family detached dwelling and provides a means to evaluate regional damage due to a single event or to compare damage due to events of different severity. Evaluation of the damage index and the data available support recommendation for future data collection efforts.

Multivariate assessment of the occurrence of compound Hazards at the pan-Asian region

  • Davy Jean Abella;Kuk-Hyun Ahn
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.166-166
    • /
    • 2023
  • Compound hazards (CHs) are two or more extreme climate events combined which occur simultaneously in the same region at the same time. Compared to individual hazards, the combination of hazards that cause CHs can result in greater economic losses and deaths. While several extreme climate events have been recorded across Asia for the past decades, many studies have only focused on a single hazard. In this study, we assess the spatiotemporal pattern of dry compound hazards which includes drought, heatwave, fire and wind across Asia for the last 42 years (1980-2021) using the historical data from ERA5 Reanalysis dataset. We utilize a daily spatial data of each climate event to assess the occurrence of such compound hazards on a daily basis. Heatwave, fire and wind hazard occurrences are analyzed using daily percentile-based thresholds while a pre-defined threshold for SPI is applied for drought occurrence. Then, the occurrence of each type of compound hazard is taken from overlapping the map of daily occurrences of a single hazard. Lastly, a multivariate assessment are conducted to quantify the occurrence frequency, hotspots and trends of each type of compound hazard across Asia. By conducting a multivariate analysis of the occurrence of these compound hazards, we identify the relationships and interactions in dry compound hazards including droughts, heatwaves, fires, and winds, ultimately leading to better-informed decisions and strategies in the natural risk management.

  • PDF

Static and dynamic mooring analysis - Stability of floating production storage and offloading (FPSO) risers for extreme environmental conditions

  • Rho, Yu-Ho;Kim, Kookhyun;Jo, Chul-Hee;Kim, Do-Youb
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권2호
    • /
    • pp.179-187
    • /
    • 2013
  • Floating production storage and offloading (FPSO) facilities are used at most of the offshore oil fields worldwide. FPSO usage is expected to grow as oil fields move to deeper water, thus requiring the reliability and stability of mooring wires and risers in extreme environmental conditions. Except for the case of predictable attack angles of external loadings, FPSO facilities with turret single point mooring (SPM) systems are in general use. There are two types of turret systems: permanent systems and disconnectable turret mooring systems. Extreme environment criteria for permanent moorings are usually based on a 100-year return period event. It is common to use two or three environments including the 100-year wave with associated wind and current, and the 100-year wind with associated waves and current. When fitted with a disconnectable turret mooring system, FPSOs can be used in areas where it is desirable to remove the production unit from the field temporarily to prevent exposure to extreme events such as cyclones or large icebergs. Static and dynamic mooring analyses were performed to evaluate the stability of a spider buoy after disconnection from a turret during cyclone environmental conditions.

Capacity assessment of existing corroded overhead power line structures subjected to synoptic winds

  • Niu, Huawei;Li, Xuan;Zhang, Wei
    • Wind and Structures
    • /
    • 제27권5호
    • /
    • pp.325-336
    • /
    • 2018
  • The physical infrastructure of the power systems, including the high-voltage transmission towers and lines as well as the poles and wires for power distribution at a lower voltage level, is critical for the resilience of the community since the failures or nonfunctioning of these structures could introduce large area power outages under the extreme weather events. In the current engineering practices, single circuit lattice steel towers linked by transmission lines are widely used to form power transmission systems. After years of service and continues interactions with natural and built environment, progressive damages accumulate at various structural details and could gradually change the structural performance. This study is to evaluate the typical existing transmission tower-line system subjected to synoptic winds (atmospheric boundary layer winds). Effects from the possible corrosion penetration on the structural members of the transmission towers and the aerodynamic damping force on the conductors are evaluated. However, corrosion in connections is not included. Meanwhile, corrosion on the structural members is assumed to be evenly distributed. Wind loads are calculated based on the codes used for synoptic winds and the wind tunnel experiments were carried out to obtain the drag coefficients for different panels of the transmission towers as well as for the transmission lines. Sensitivity analysis is carried out based upon the incremental dynamic analysis (IDA) to evaluate the structural capacity of the transmission tower-line system for different corrosion and loading conditions. Meanwhile, extreme value analysis is also performed to further estimate the short-term extreme response of the transmission tower-line system.

Assessment of seismic stability of finite slope in c-ϕ soils - a plasticity approach

  • Shibsankar, Nandi;G., Santhoshkumar ;Priyanka, Ghosh
    • Geomechanics and Engineering
    • /
    • 제31권5호
    • /
    • pp.439-452
    • /
    • 2022
  • A forecast of slope behavior during catastrophic events, such as earthquakes is crucial to recognize the risk of slope failure. This paper endeavors to eliminate the significant supposition of predefined slip surfaces in the slope stability analysis, which questions the relevance of simple conventional methods under seismic conditions. To overcome such limitations, a methodology dependent on the slip line hypothesis, which permits an automatic generation of slip surfaces, is embraced to trace the extreme slope face under static and seismic conditions. The effect of earthquakes is considered using the pseudo-static approach. The current outcomes developed from a parametric study endorse a non-linear slope surface as the extreme profile, which is in accordance with the geomorphological aspect of slopes. The proposed methodology is compared with the finite element limit analysis to ensure credibility. Through the design charts obtained from the current investigation, the stability of slopes can be assessed under seismic conditions. It can be observed that the extreme slope profile demands a flat configuration to endure the condition of the limiting equilibrium at a higher level of seismicity. However, a concurrent enhancement in the shear strength of the slope medium suppresses this tendency by offering greater resistance to the seismic inertial forces induced in the medium. Unlike the traditional linear slopes, the extreme slope profiles mostly exhibit a steeper layout over a significant part of the slope height, thus ensuring a more optimized solution to the slope stability problem. Further, the susceptibility of the Longnan slope failure in the Huining-Wudu seismic belt is predicted using the current plasticity approach, which is found to be in close agreement with a case study reported in the literature. Finally, the concept of equivalent single or multi-tiered planar slopes is explored through an example problem, which exhibits the appropriateness of the proposed non-linear slope geometry under actual field conditions.

Assessment of weather events impacts on forage production trend of sorghum-sudangrass hybrid

  • Moonju Kim;Kyungil Sung
    • Journal of Animal Science and Technology
    • /
    • 제65권4호
    • /
    • pp.792-803
    • /
    • 2023
  • This study aimed to assess the impact of weather events on the sorghum-sudangrass hybrid (Sorghum bicolor L.) cultivar production trend in the central inland region of Korea during the monsoon season, using time series analysis. The sorghum-sudangrass production data collected between 1988 and 2013 were compiled along with the production year's weather data. The growing degree days (GDD), accumulated rainfall, and sunshine duration were used to assess their impacts on forage production (kg/ha) trend. Conversely, GDD and accumulated rainfall had positive and negative effects on the trend of forage production, respectively. Meanwhile, weather events such as heavy rainfall and typhoon were also collected based on weather warnings as weather events in the Korean monsoon season. The impact of weather events did not affect forage production, even with the increasing frequency and intensity of heavy rainfall. Therefore, the trend of forage production for the sorghum-sudangrass hybrid was forecasted to slightly increase until 2045. The predicted forage production in 2045 will be 14,926 ± 6,657 kg/ha. It is likely that the damage by heavy rainfall and typhoons can be reduced through more frequent harvest against short-term single damage and a deeper extension of the root system against soil erosion and lodging. Therefore, in an environment that is rapidly changing due to climate change and extreme/abnormal weather, the cultivation of the sorghum-sudangrass hybrid would be advantageous in securing stable and robust forage production. Through this study, we propose the cultivation of sorghum-sudangrass hybrid as one of the alternative summer forage options to achieve stable forage production during the dynamically changing monsoon, in spite of rather lower nutrient value than that of maize (Zea mays L.).

Software for adaptable eccentric analysis of confined concrete circular columns

  • Rasheed, Hayder A.;El-Fattah, Ahmed M. Abd;Esmaeily, Asad;Jones, John P.;Hurst, Kenneth F.
    • Computers and Concrete
    • /
    • 제10권4호
    • /
    • pp.331-347
    • /
    • 2012
  • This paper describes the varying material model, the analysis method and the software development for reinforced concrete circular columns confined by spiral or hoop transverse steel reinforcement and subjected to eccentric loading. The widely used Mander model of concentric loading is adapted here to eccentric loading by developing an auto-adjustable stress-strain curve based on the eccentricity of the axial load or the size of the compression zone to generate more accurate interaction diagrams. The prediction of the ultimate unconfined capacity is straight forward. On the other hand, the prediction of the actual ultimate capacity of confined concrete columns requires specialized nonlinear analysis. This nonlinear procedure is programmed using C-Sharp to build efficient software that can be used for design, analysis, extreme event evaluation and forensic engineering. The software is equipped with an elegant graphics interface that assimilates input data, detail drawings, capacity diagrams and demand point mapping in a single sheet. Options for preliminary design, section and reinforcement selection are seamlessly integrated as well. Improvements to KDOT Bridge Design Manual using this software with reference to AASHTO LRFD are made.