According to recent researches on climate change, the global warming is obvious to increase rainfall intensity. Damage caused by extreme hydrologic events due to global change is steadily getting bigger and bigger. Recently, frequently occurring heavy rainfalls surely affect the trend of rainfall observations. Probability precipitation estimation method used in designing and planning hydrological resources assumes that rainfall data is stationary. The stationary probability precipitation estimation method could be very weak to abnormal rainfalls occurred by climate change, because stationary probability precipitation estimation method cannot reflect increasing trend of rainfall intensity. This study analyzed temporal variation of trend in rainfall time series at 51 stations which are not significant for statistical trend tests. After modeling rainfall time series with maintaining observed statistical characteristics, this study also estimated whether rainfall data is significant for the statistical trend test in near future. It was found that 13 stations among sample stations will have trend within 10 years. The results indicate that non-stationary probability precipitation estimation method must be applied to sufficiently consider increase trend of rainfall.
KSCE Journal of Civil and Environmental Engineering Research
/
v.44
no.2
/
pp.161-172
/
2024
A Copula approach has the advantage of providing structural dependencies for representing multivariate distributions for the hydrometeorological variable marginal distribution involved, however, copulas are inflexible for extending in high dimensions, and satisfy certain assumptions to make the dependency. In addition, since the process of estimating design rainfall under the future climate associated with durations given a return period is mainly analyzed by 24-hour annual maximum rainfalls, the dependency structure contains information only on the daily and sub-daily extreme precipitation. Methods based on bivariate copula do not provide information for other duration's dependencies, which causes the intensity to be reversed. The vine copula has been proposed to process the multivariate analysis as vines consisting of trees with nodes and edges connecting pair-copula construction. In this study, we aimed to downscale under climate change to produce sub-daily extreme precipitation data considering different durations based on vine copula.
Extreme water events such as heavy rainfalls due to recent climate change are continually increasing and their scale has also shown an increasing trend. To overcome these natural disasters, this policy study suggests securing lateral river space as an effective method for extreme flood. To support the importance of restoration and expansion of lateral river space, Gumi upstream region of the Nakdong River basin was chosen as a target area and flood reduction analysis of the washland by using LISFLOOD model have been examined. The 500-year frequency flood was simulated for the estimation of possibly occurable flood level and it turns out that the secured lateral river space on the selected site effectively lowers about 0.53 m flood level and reduces the flood damage of the city on the lower reaches of the river. In addition, based on this result, multilateral river space securing plans were compared, and conservation easement and natural disaster insurance were suggested for sustainable and cost-effective alternatives. The costs of land purchase and conservation easement for securing the river space were also compared.
It is recommended to use long-term hydrometeorological data for more than the service life of the hydraulic structures and water resource planning. For the purpose of expanding rainfall data, stochastic simulation models, such as Modified Bartlett-Lewis Rectangular Pulse (BLRP) and Neyman-Scott Rectangular Pulse (NSRP) models, have been widely used. The optimal parameters of the model can be estimated by repeatedly comparing the statistical moments defined through a combination of parameters of the probability distribution in the optimization context. However, parameter estimation using relatively small observed rainfall statistics corresponds to an ill-posed problem, leading to an increase in uncertainty in the parameter estimation process. In addition, as shown in previous studies, extreme values are underestimated because objective functions are typically defined by the first and second statistical moments (i.e., mean and variance). In this regard, this study estimated the parameters of the NSRP model using the objective function with the third moment and compared it with the existing approach based on the first and second moments in terms of estimation of extreme rainfall. It was found that the first and second moments did not show a significant difference depending on whether or not the skewness was considered in the objective function. However, the proposed model showed significantly improved performance in terms of estimation of design rainfalls.
Journal of The Korean Society of Agricultural Engineers
/
v.46
no.4
/
pp.25-36
/
2004
This study was conducted to derive the design rainfall by the consecutive duration using the at-site frequency analysis. Using the errors, K-S tests and LH-moment ratios, Log Pearson type 3 (LP3) and Generalized Extreme Value (GEV) distributions of Gamma and Non-Gamma Family, respectively were identified as the optimal probability distributions among applied distributions. Parameters of GEV and LP3 distributions were estimated by the method of L and LH-moments and the Indirect method of moments respectively. Design rainfalls following the consecutive duration were derived by at-site frequency analysis using the observed and simulated data resulted from Monte Carlo techniques. Relative root-mean-square error (RRMSE) and relative efficiency (RE) in RRMSE for the design rainfall derived by at-site analysis in the observed and simulated data were computed and compared. It has shown that at-site frequency analysis by GEV distribution using L-moments is confirmed as more reliable than that of GEV and LP3 distributions using LH-moments and Indirect method of moments in view of relative efficiency.
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.12-12
/
2018
수공구조물 설계의 기준을 정하기 위해서 수문자료의 빈도해석이 널리 사용되고 있다. 수문자표의 빈도해석 기법으로는 자료의 차원과 기법에 따라서 총 네 개로 구분할 수 있다. 그 네 개의 빈도해석은 다음과 같다 1) 단변량 수문자료와 지점별로 확률분포형 모형을 구축하는 단변량 지점빈도해석, 2) 다변량 수문자료와 지점별로 확률분포형을 구축하는 다변량 지점빈도해석, 3) 단변량 수문자료와 동일지점내의 확률분포모형을 구축하는 단변량 지역빈도해석, 4) 다변량 수문자료와 동일지점내의 확률분포모형을 구축하는 다변량 지역빈도해석. 현재는 다변량 지역빈도해석에 대한 연구사 수문분야에서 활발히 연구되고 있다. 현재 다변량 지역빈도해석에 대한 한국의 극한 강우 자료에 대한 연구가 진행되지 않았기 때문에, 본 연구에서는 이변량 극한강우자료에 대한 다변량 지역빈도해석의 적용성을 평가하였다.
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.139-139
/
2021
Flooding events often result from extreme precipitations driven by various climate mechanisms, which are often disregarded in flood risk assessments. To bridge this gap, we propose a climate-mechanism-based flood frequency analysis that accommodates the direct linkage between the dominant climate processes and risk management decisions. Several statistical methods have been utilized in this approach including the Markov Chain analysis, K-nearest neighbor (KNN) resampling approach, and Z-score-based jittering method. After that, the impacts of climate change are associated with the modification of the transition matrix (TM) and the application of the quantile mapping approach. For this study, we have selected the Nam River Basin, South Korea, to consider the heterogeneous impacts of the two climate mechanisms, including the Tropical Cyclone (TC) and non-TCs. Based on our results, while both climate mechanisms have significant impacts on future flood extremes, TCs have been observed to bring more significant and immediate impacts on the flood extremes. The results in this study have proven that the proposed approach can lead to a new insights into future flooding management.
Proceedings of the Korea Water Resources Association Conference
/
2020.06a
/
pp.170-170
/
2020
Due to the development of technologies, complex computation of huge data set is possible with a prevalent personal computer. Therefore, machine learning methods have been widely applied in the hydrologic field such as regression-based regional frequency analysis (RFA). The main purpose of this study is to compare two frameworks of RFA based on the artificial neural network (ANN) models: quantile regression technique (QRT-ANN) and parameter regression technique (PRT-ANN). As an output layer of the ANN model, the QRT-ANN predicts quantiles for various return periods whereas the PRT-ANN provides prediction of three parameters for the generalized extreme value distribution. Rainfall gauging sites where record length is more than 20 years were selected and their annual maximum rainfalls and various hydro-meteorological variables were used as an input layer of the ANN model. While employing the ANN model, 70% and 30% of gauging sites were used as training set and testing set, respectively. For each technique, ANN model structure such as number of hidden layers and nodes was determined by a leave-one-out validation with calculating root mean square error (RMSE). To assess the performances of two frameworks, RMSEs of quantile predicted by the QRT-ANN are compared to those of the PRT-ANN.
KSCE Journal of Civil and Environmental Engineering Research
/
v.31
no.3B
/
pp.277-284
/
2011
The limitations of existing Markov chain model for reproducing extreme rainfalls are a known problem, and the problems have increased the uncertainties in establishing water resources plans. Especially, it is very difficult to secure reliability of water resources structures because the design rainfall through the existing Markov chain model are significantly underestimated. In this regard, aims of this study were to develop a new daily rainfall simulation model which is able to reproduce both mean and high order moments such as variance and skewness using a piecewise Kernel-Pareto distribution. The proposed methods were applied to summer and fall season rainfall at three stations in Han river watershed in Korea. The proposed Kernel-Pareto distribution based Markov chain model has been shown to perform well at reproducing most of statistics such as mean, standard deviation and skewness while the existing Gamma distribution based Markov chain model generally fails to reproduce high order moments. It was also confirmed that the proposed model can more effectively reproduce low order moments such as mean and median as well as underlying distribution of daily rainfall series by modeling extreme rainfall separately.
Magazine of the Korean Society of Agricultural Engineers
/
v.44
no.5
/
pp.41-53
/
2002
This study was conducted to derive the regional design rainfall by the regional frequency analysis based on the regionalization of the precipitation suggested by the first report of this project. According to the regions and consecutive durations, optimal design rainfalls were derived by the regional frequency analysis for L-moment in the second report of this project. Using the LH-moment ratios and Kolmogorov-Smirnov test, the optimal regional probability distribution was identified to be the Generalized extreme value (GEV) distribution among applied distributions. regional and at-site parameters of the GEV distribution were estimated by the linear combination of the higher probability weighted moments, LH-moment. Design rainfall using LH-moments following the consecutive duration were derived by the regional and at-site analysis using the observed and simulated data resulted from Monte Carlo techniques. Relative root-mean-square error (RRMSE), relative bias (RBIAS) and relative reduction (RR) in RRMSE for the design rainfall were computed and compared in the regional and at-site frequency analysis. Consequently, it was shown that the regional analysis can substantially more reduce the RRMSE, RBIAS and RR in RRMSE than at-site analysis in the prediction of design rainfall. Relative efficiency (RE) for an optimal order of L-moments was also computed by the methods of L, L1, L2, L3 and L4-moments for GEV distribution. It was found that the method of L-moments is more effective than the others for getting optimal design rainfall according to the regions and consecutive durations in the regional frequency analysis. Diagrams for the design rainfall derived by the regional frequency analysis using L-moments were drawn according to the regions and consecutive durations by GIS techniques.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.