• 제목/요약/키워드: extreme quantiles

검색결과 32건 처리시간 0.027초

독립호우사상의 확률론적 해석 : 2. 호우사상의 재현기간 (Probabilistic Analysis of Independent Storm Events: 2. Return Periods of Storm Events)

  • 유철상;박민규
    • 한국방재학회 논문집
    • /
    • 제11권2호
    • /
    • pp.137-146
    • /
    • 2011
  • 본 연구에서는 이변량 극치분포를 이용하여 연최대치 호우사상을 평가하였다. 이를 위해 특정 재현기간을 가지는 호우사상의 강우량을 비동시결합 재현기간, 동시결합 재현기간 그리고 구간조건부 결합재현기간의 세 가지를 이용하여 산정하였다. 이때, 결합재현기간별 호우사상의 값의 크기가 서로 다르게 산정되는 이유를 이변량 분포의 확률특성을 보여주는 사분면을 이용하여 설명하였다. 호우지속기간 24시간인 경우에 동시결합재현기간을 이용하여 산정한 확률강우량은 전통적인 방법으로 얻어진 강우지속기간 24시간의 확률강우량과 유사하게 나타났다. 이러한 결과는 전통적인 강우빈도해석의 제약사항을 극복하는데 도움이 될 것으로 보여진다. 이변량 빈도해석으로 얻어진 확률호우사상은 저류시설물의 계획시 통계적으로 보다 유용하면서도 간단한 설계 호우사상을 제공할 수 있을 것으로 보여진다.

Quantile 회귀분석을 이용한 극대강수량 자료의 경향성 분석 (Trend Analysis of Extreme Precipitation Using Quantile Regression)

  • 소병진;권현한;안정희
    • 한국수자원학회논문집
    • /
    • 제45권8호
    • /
    • pp.815-826
    • /
    • 2012
  • 기존 Ordinary Regression (OR) 방법을 이용한 경향성 분석은 경향성을 과소평가하는 문제점을 나타낸다. 이러한 점에서 본 연구에서는 자료의 정규분포 가정과 평균을 중심으로 경향성 평가가 이루어지는 기존 Ordinary Regression (OR) 방법을 개선한 Quantile Regression (QR) 방법을 제안하였다. 본 연구에서는 64개 강우 관측지점의 연 최대 극대강수량 자료에 대하여 QR 방법과 OR 방법에 대하여 통계적 성능을 평가하였다. QR 방법의경향성 분석결과 47개 지점에서 5% 오차수준 내에서 t-검정을 통과한 반면 OR 방법에서는 13개 지점 만이 통계적 유의성을 가지는 것으로 나타났다. 이는 OR 방법이 자료의 평균을 중심으로 경향성을 평가하는 기법인데 반해 QR은 자료의 다양한 분위에서 경향성을 평가함으로써 극대 및 극소 부분에서의 경향성을 보다 유연하게 감지하는 이유로 판단된다. QR 방법을 통한 경향성 평가는 평균 중심의 해석문제점을 개선할 수 있으며 자료가 정규분포를 따르지 않거나 왜곡된 분포형태를 갖는 자료의 수문학적 경향성 평가에 유용하게 사용될 수 있을 것으로 판단된다.

3변수 Weibull 분포형의 형상매개변수 및 극치값 가중치를 고려한 EDF 검정에 대한 연구 (A Study on Empirical Distribution Function with Unknown Shape Parameter and Extreme Value Weight for Three Parameter Weibull Distribution)

  • 김태림;신홍준;허준행
    • 한국수자원학회논문집
    • /
    • 제46권6호
    • /
    • pp.643-653
    • /
    • 2013
  • 적절한 확률분포형을 결정하고 그에 따른 확률수문량을 산정하는 것은 빈도해석에서 가장 중요한 절차이며, 이를 수행하기 위해서는 경험적 확률분포에서 얻어지는 자료와 가정한 확률분포에서 얻어지는 자료의 일치 정도를 판별하는 적합도 검정을 거쳐야 한다. 지금까지 일반적으로 적용된 적합도 검정 방법은 분포형의 전체적인 적합정도를 판별하여 최근의 기상이변으로 인한 극치 사상에 대하여는 충분히 고려하지 못하고 있다. 따라서 본 연구에서는 분포형의 극치 사상에 가중치를 주는 modified Anderson-Darling(AD) 검정 방법을 3변수 Weibull 분포형에 적용하여 검정통계량 한계값과 기각력을 살펴보았으며 이를 실제자료에 적용한 결과, modified AD 검정 방법이 다른 기존의 적합도 검정보다 더 우수한 기각력을 가지고 있음을 확인하였다. 이는 앞으로 3변수 Weibull 분포형을 이용한 극치 수문량 선정에 있어 modified AD 방법이 하나의 기준으로 작용할 수 있을 것이라 판단된다.

기후정보와 지리정보를 결합한 계층적 베이지안 모델링을 이용한 재현기간별 일 강우량의 공간 분포 및 불확실성 (Spatial distribution and uncertainty of daily rainfall for return level using hierarchical Bayesian modeling combined with climate and geographical information)

  • 이정훈;이옥정;서지유;김상단
    • 한국수자원학회논문집
    • /
    • 제54권10호
    • /
    • pp.747-757
    • /
    • 2021
  • 극한 강우의 정량화는 홍수방어계획의 수립에 대단히 중요하며 극한 강우의 일반적인 척도는 T-년 재현기간으로 표현된다. 본 연구에서는 기후정보와 지리정보가 결합된 계층적 베이지안 모형을 이용하여 재현기간별 일 강우량의 공간 분포 및 불확실성을 추정하는 방법을 제시하고 이를 서울-인천-경기 지역에 적용하였다. 한국 기상청에서 운영 중인 서울-인천-경기 지역의 6개 종관기상관측소의 연 최대 일 강우량이 일반화된 극치 분포에 적합되었다. 지점 빈도해석과 지수 홍수법을 이용한 지역 빈도해석으로부터 도출된 재현기간별 일 강우량과의 비교를 통하여 제안된 방법의 적용성 및 신뢰도를 살펴보았다. 모든 지점과 모든 재현기간에서 지수홍수법에 의한 지역 빈도해석의 불확실성이 가장 큰 것으로 나타났으며, 계층적 베이지안 모형에 의한 지역 빈도해석의 신뢰도가 가장 높은 것을 확인하였다. 제안된 방법은 서울-인천-경기 지역 및 공간적인 크기가 유사한 다른 지역에서 다양한 지속기간에 대한 확률강우량 지도를 생성하는데 사용될 수 있을 것이다.

Application of artificial neural network model in regional frequency analysis: Comparison between quantile regression and parameter regression techniques.

  • Lee, Joohyung;Kim, Hanbeen;Kim, Taereem;Heo, Jun-Haeng
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.170-170
    • /
    • 2020
  • Due to the development of technologies, complex computation of huge data set is possible with a prevalent personal computer. Therefore, machine learning methods have been widely applied in the hydrologic field such as regression-based regional frequency analysis (RFA). The main purpose of this study is to compare two frameworks of RFA based on the artificial neural network (ANN) models: quantile regression technique (QRT-ANN) and parameter regression technique (PRT-ANN). As an output layer of the ANN model, the QRT-ANN predicts quantiles for various return periods whereas the PRT-ANN provides prediction of three parameters for the generalized extreme value distribution. Rainfall gauging sites where record length is more than 20 years were selected and their annual maximum rainfalls and various hydro-meteorological variables were used as an input layer of the ANN model. While employing the ANN model, 70% and 30% of gauging sites were used as training set and testing set, respectively. For each technique, ANN model structure such as number of hidden layers and nodes was determined by a leave-one-out validation with calculating root mean square error (RMSE). To assess the performances of two frameworks, RMSEs of quantile predicted by the QRT-ANN are compared to those of the PRT-ANN.

  • PDF

비정상성 빈도해석을 위한 기상인자 선정 및 확률강우량 산정 (Selection of Climate Indices for Nonstationary Frequency Analysis and Estimation of Rainfall Quantile)

  • 정태호;김한빈;김현식;허준행
    • 대한토목학회논문집
    • /
    • 제39권1호
    • /
    • pp.165-174
    • /
    • 2019
  • 수문관측자료에서 비정상성(nonstationarity)이 관측됨에 따라 수공구조물 설계에서 비정상성 빈도해석에 대한 연구가 활발히 진행되고 있다. 대기-해양 시스템에 내재된 기후 변동성은 비정상성 현상과 관련이 있는 것으로 알려져 있지만, 비정상성 빈도해석은 일반적으로 선형적 추세를 기반으로 이루어지고 있다. 본 연구에서는 우리나라의 기후 변동성과 극치 강우 사상의 장기 경향성을 고려하기 위하여 기상인자를 활용한 비정상성 빈도해석을 수행하였다. 먼저, 경향성이 나타나는 11개 기상관측지점의 연 최대치 강우자료에 대하여 통계적 분해 방법인 앙상블 경험적 모드분해법을 활용해 자료에 내재된 장기 경향성을 추출하였으며, 계절에 따른 다양한 기상인자와의 상관성 분석을 수행하였다. 그 결과, 연 최대 강우 발생년도를 기준으로 전년도 가을철 AMM과 전년도 가을철 AMO, 그리고 전년도 여름철 NINO4가 10개 이상의 지점에서 연 최대치 강우자료의 장기 경향성에 유의한 영향을 미치는 것으로 나타났다. 선정된 기상인자를 일반 극치(generalized extreme value, GEV) 분포모형에 적용하여 비정상성 GEV (NS-GEV) 모형을 구축하고 기존의 선형적 추세를 고려한 NS-GEV 모형과의 AIC값을 비교하여 최적모형을 선정하였다. 선정된 모형과 기존의 선형적 추세를 고려한 NS-GEV 모형에 대한 성능 평가를 통해 기상인자를 활용한 NS-GEV 모형이 극치강우사상을 반영하여 확률강우량의 과소산정 문제를 보완할 수 있음을 확인하였다.

하방위험을 이용한 위험자산의 최적배분 (Optimal Portfolio Selection in a Downside Risk Framework)

  • 형남원;한규숙
    • 재무관리연구
    • /
    • 제24권3호
    • /
    • pp.133-152
    • /
    • 2007
  • 손실기피(limited down side risk) 선호를 가진 투자자의 경우 통상적으로 사용하는 위험도의 척도인 분산 혹은 표준편차 대신에 하방 위험성에 더 관심을 가지게 되는데, 이러한 경우 평균-VaR 모형이 평균-분산 모형보다 더 적합한 모형일 수 있다. 이 논문에서는 두 모형을 이용하여 최적자산배분 문제를 실증분석하고 그 결과의 차이를 비교하였다. 수익률의 분포에 정규분포 가정이 아닌 두터운 꼬리(fat tail) 분포 가정을 도입하여 극단적인 위험을 고려한 최적자산배분 문제를 분석을 하였다. 각 이론이나 가정들의 강건성(robustness)을 살펴보기 위하여 역사적 분포를 이용한 분석을 비교 기준으로 하였다. 경험적 혹은 역사적 분포를 이용한 분석을 통해서, 극단적인 위험을 고려하는 손실기피적인 선호체계에서의 최적화 행위는 정규분포의 가정이나 평균-분산 모형이 적절하지 않은 것으로 확인되었다. 일상적인 수준을 능가하는 극단적인 손실 위험성을 고려하기에 적합한 모형은 수익률의 두터운 꼬리를 반영하는 분포 가정에 기초한 평균-VaR 모형인 것으로 나타났다.

  • PDF

RCP4.5 기후변화 시나리오와 인공신경망을 이용한 우리나라 확률강우량의 변화 (The change of rainfall quantiles calculated with artificial neural network model from RCP4.5 climate change scenario)

  • 이주형;허준행;김기주;김영오
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.130-130
    • /
    • 2022
  • 기후변화로 인한 기상이변 현상으로 폭우와 홍수 등 수문학적 극치 사상의 출현 빈도가 잦아지고 있다. 따라서 이러한 기상이변 현상에 적응하기 위하여 보다 정확한 확률강우량 측정의 필요성이 증가하고 있다. 대장 지점의 미래 확률강우량 계산을 위해선 기후변화 시나리오의 비정상성을 고려해야 한다. 본 연구는 비정상적인 미래 기후에서 확률강우량이 어떻게 변화하는지 측정하는 것을 목표로 한다. Representative Concentration Pathway (RCP4.5)에 따른 우리나라의 확률강우량 계산에 인공신경망을 포함한 정상성, 비정상성 확률강우량 산정 모델들이 사용되었다. 지점빈도해석(AFA), 홍수지수법(IFM), 모분포홍수지수법(PIF), 인공신경망을 이용한 Quantile & Parameter regression technique(QRT & PRT)이 정상성 자료에 대해 확률강우량을 계산하는 모델로 사용되었으며, 비정상성 자료에 대해서는 비정상성 지점빈도해석(NS-AFA), 비정상성 홍수지수법(NS-IFM), 비정상성 모분포홍수지수법(NS-PIF), 인공신경망을 사용한 비정상성 Quantile & Parameter regression technique(NS-QRT & NS-PRT)이 사용되었다. Rescaled Akaike information criterion(rAIC)를 사용한 불확실성 분석과 적합도 검정을 통해서 generalized extreme value(GEV) 분포형 모델이 정상성 및 비정상성 확률강우량 산정에 가장 적합한 모델로 선정되었다. 이후, 관측자료가 GEV(0,0,0)을 따르고 시나리오 자료가 GEV(1,0,0)을 따르는 지점들을 선택하여 미래의 확률강우량 변화를 추정하였다. 각 빈도해석 모델들은 몬테카를로 시뮬레이션을 통해 bias, relative bias(Rbias), root mean square error(RMSE), relative root mean square error(RRMSE)를 바탕으로 측정하여 정확도를 계산하였으며 그 결과 QRT와 NS-QRT가 각각 정상성과 비정상성 자료로부터 가장 정확하게 확률강우량을 계산하였다. 본 연구를 통해 향후 기후변화의 영향으로 확률강우량이 증가할 것으로 예상되며, 비정상성을 고려한 빈도분석 또한 필요함을 제안하였다.

  • PDF

Copula 모형을 이용한 이변량 강우빈도해석 (Bivariate Frequency Analysis of Rainfall using Copula Model)

  • 주경원;신주영;허준행
    • 한국수자원학회논문집
    • /
    • 제45권8호
    • /
    • pp.827-837
    • /
    • 2012
  • 확률강우량은 수공구조물의 설계에 있어 중요한 역할을 하며 이러한 확률강우량의 산정은 일반적으로 일변량 빈도해석을 수행하고 최적의 확률분포형을 찾아냄으로써 계산된다. 하지만 일변량 빈도해석은 수행 시 지속기간이 제한적이라는 단점이 있으며 이를 보완하기 위해 본 연구에서는 이변량 빈도해석을 수행하였다. 다변량 모형인 copula 모형 중3가지의 분포형을 이용하여 5개 지점의 연최대강우사상에 대해 이 변량 빈도해석을 수행하였으며 확률변수로 강우량과 지속기간을 사용하였다. 주변분포형은 강우량에는 Gumbel (GUM), generalized logistic (GLO) 분포형, 지속기간에는 generalized extreme value (GEV), GUM, GLO 분포형이사용됐으며 copula 모형은Frank, Joe, Gumbel-Hougaard 모형을 이용하였다. 주변분포형의 매개변수는 확률가중모멘트법을 이용하여 추정하였으며, copula 모형의 매개변수는 준모수방법인 의사최우도법을 사용하여 구하였다. 이를 통해 얻어진 확률강우량을 주변분포형과 copula 모형을바꾸어가며 비교하였다. 그 결과, 주변분포형의 종류에 따른 변화에서는 지속기간의 분포형에는 크게 영향을 받지 않는 것으로 나타났다. 강우량의 분포형에 따라서는 조금씩 차이가 났으며 강우량의 분포형이 GUM일 경우, GLO일 때에 비해 재현기간이 증가할수록 확률강우량이 증가하는 경향이 두드러졌다. Copula 모형별로 비교해보았을 때, Joe, Gumbel-Hougaard 모형은 비슷한 경향을 나타내었으며 Frank 모형은 재현기간의 증가에 따른 확률강우량의 증가가 강하게 나타냈다.

잔차시계열 분석을 통한 비정상성 강우빈도해석 (Non-stationary Rainfall Frequency Analysis Based on Residual Analysis)

  • 장선우;서린;김태웅;안재현
    • 대한토목학회논문집
    • /
    • 제31권5B호
    • /
    • pp.449-457
    • /
    • 2011
  • 최근 기후변화/변동으로 인한 집중호우가 증가하여 수문기상재해에 따른 피해가 증가하고 있다. 미래의 발생가능한 극한 강우사상에 대응하기 위해, 일반적으로 수문학적 빈도해석을 이용하여 목표연도의 설계 강우량을 산정한다. 이것은 수문빈도 해석에 적용된 강우자료가 정상성임을 가정하여 설계 강우량을 산정하는 것이다. 하지만, 최근 관측된 강우자료를 살펴보면, 통계적 특성이 시간에 따라 변하는 경우가 있다. 본 연구는 연최대강우량의 회귀직선에 대한 잔차의 수문학적 빈도해석을 바탕으로, 가까운 미래로 설정된 목표연도의 확률강우량을 산정하는 방법을 제안하였다. 현재까지의 관측자료를 기초로 선형회귀식의 추세선을 이용하여 잔차 시계열을 생성하고, 잔차에 대한 확률밀도함수를 추정한 후, 추세선의 증가 및 감소 경향을 고려하여 확률강우량을 산정하였다. 14개의 강우관측지점에 적용한 결과, 증가경향을 보이는 경우에는 현시점까지의 자료에 대한 선형회귀식을 산정한 후, 목표연도까지 연장했을 때의 추세요소를 산정한 방법이 보다 적합한 확률강우량을 산정하는 것으로 나타났다. 이러한 결과는 정상성을 바탕으로 추정한 확률강우량과 비교했을 때, 5-25%의 예측편차가 1-22% 정도로 감소하였다.