• 제목/요약/키워드: extreme mixture distribution

검색결과 10건 처리시간 0.03초

혼합 얼랑 확률변수의 극한치 (Extreme Values of Mixed Erlang Random Variables)

  • Kang, Sung-Yeol
    • 한국경영과학회지
    • /
    • 제28권4호
    • /
    • pp.145-153
    • /
    • 2003
  • In this Paper, we examine the limiting distributional behaviour of extreme values of mixed Erlang random variables. We show that, in the finite mixture of Erlang distributions, the component distribution with an asymptotically dominant tail has a critical effect on the asymptotic extreme behavior of the mixture distribution and it converges to the Gumbel extreme-value distribution. Normalizing constants are also established. We apply this result to characterize the asymptotic distribution of maxima of sojourn times in M/M/s queuing system. We also show that Erlang mixtures with continuous mixing may converge to the Gumbel or Type II extreme-value distribution depending on their mixing distributions, considering two special cases of uniform mixing and exponential mixing.

혼합분포 기반 비정상성 강우 빈도해석 기법 개발 (A development of nonstationary rainfall frequency analysis model based on mixture distribution)

  • 최홍근;권현한;박문형
    • 한국수자원학회논문집
    • /
    • 제52권11호
    • /
    • pp.895-904
    • /
    • 2019
  • 극치 강우 자료는 정상성 빈도모델에서 효과적으로 구현되지 않는 비정상성 거동을 종종 보인다. 또한, 극치 사상의 확률밀도함수는 여름 장마와 태풍 등의 서로 다른 강우 패턴에 의해 2개 이상의 첨두를 가지는 혼합분포형태이다. 이러한 강우 패턴의 변화에 대해 Bayesian 이론을 활용한 비정상성 혼합분포(mixture distribution based nonstationary frequency, MDNF)모델을 제안하였다. 2개의 Gumbel 분포형이 혼합된 MDNF 모델은 Gumbel 분포형 매개변수 중 하나인 위치매개변수의 시변성을 효과적으로 설명한다. 제안한 모델의 성능평가를 위해 정상성 혼합분포모델과의 다양한 통계치 결과를 비교하였다. 정상성 혼합분포모델보다 전반적으로 향상된 성능을 보여주는 MDNF 모델을 통해 극치 강우 패턴이 비정상성을 보인다는 가정을 확인할 수 있다.

Estimating Suitable Probability Distribution Function for Multimodal Traffic Distribution Function

  • Yoo, Sang-Lok;Jeong, Jae-Yong;Yim, Jeong-Bin
    • 해양환경안전학회지
    • /
    • 제21권3호
    • /
    • pp.253-258
    • /
    • 2015
  • The purpose of this study is to find suitable probability distribution function of complex distribution data like multimodal. Normal distribution is broadly used to assume probability distribution function. However, complex distribution data like multimodal are very hard to be estimated by using normal distribution function only, and there might be errors when other distribution functions including normal distribution function are used. In this study, we experimented to find fit probability distribution function in multimodal area, by using AIS(Automatic Identification System) observation data gathered in Mokpo port for a year of 2013. By using chi-squared statistic, gaussian mixture model(GMM) is the fittest model rather than other distribution functions, such as extreme value, generalized extreme value, logistic, and normal distribution. GMM was found to the fit model regard to multimodal data of maritime traffic flow distribution. Probability density function for collision probability and traffic flow distribution will be calculated much precisely in the future.

원양어선 조업 데이터의 혼합 극단분포를 이용한 이상점 탐색 연구 (A Study of Outlier Detection Using the Mixture of Extreme Distributions Based on Deep-Sea Fishery Data)

  • 이정진;김재경
    • 응용통계연구
    • /
    • 제28권5호
    • /
    • pp.847-858
    • /
    • 2015
  • 남극해에서는 우리나라를 포함한 연안 강대국들의 원양어업이 활발히 성행하고 있다. 주인 없는 남극해의 생태계를 보호하기 위해 조업 국가들은 남극해양생물자원보존위원회를 만들고 협약을 맺어 일정한 어획량만 조업하고 금지기간과 금지구역을 설정하여 불법조업을 방지하고 있다. 남극해에서 조업하는 어종 중의 하나가 이빨고기(tooth fish)인데 비싼 값 때문에 불법조업이 있는 경우가 많다. 한 배의 조업성과는 CPUE(catch per unit effort)로 나타낼 수 있고, 한 지역에서 조업한 배들의 CPUE는 단일 또는 혼합 극단분포 형태를 가진다. 단일 극단분포일 경우 이상점 탐색은 상위 백분위수를 이용하면 된다. 본 논문은 자료가 혼합 극단분포인 경우 이상점 탐색을 위한 통계적 방법을 연구하고자 한다. 본 연구에서는 자료에 적합한 혼합 극단분포 모형을 EM 알고리즘으로 추정한 후 로그 가능도함수 값을 이용하거나 사후 확률을 이용한 이상점 탐색 알고리즘을 제안한다. 이 방법을 남극해 조업 데이터에 적용하여 시뮬레이션 한 결과 통계적 방법 적용의 가능성을 보여주었다.

Extreme value modeling of structural load effects with non-identical distribution using clustering

  • Zhou, Junyong;Ruan, Xin;Shi, Xuefei;Pan, Chudong
    • Structural Engineering and Mechanics
    • /
    • 제74권1호
    • /
    • pp.55-67
    • /
    • 2020
  • The common practice to predict the characteristic structural load effects (LEs) in long reference periods is to employ the extreme value theory (EVT) for building limit distributions. However, most applications ignore that LEs are driven by multiple loading events and thus do not have the identical distribution, a prerequisite for EVT. In this study, we propose the composite extreme value modeling approach using clustering to (a) cluster initial blended samples into finite identical distributed subsamples using the finite mixture model, expectation-maximization algorithm, and the Akaike information criterion; (b) combine limit distributions of subsamples into a composite prediction equation using the generalized Pareto distribution based on a joint threshold. The proposed approach was validated both through numerical examples with known solutions and engineering applications of bridge traffic LEs on a long-span bridge. The results indicate that a joint threshold largely benefits the composite extreme value modeling, many appropriate tail approaching models can be used, and the equation form is simply the sum of the weighted models. In numerical examples, the proposed approach using clustering generated accurate extrema prediction of any reference period compared with the known solutions, whereas the common practice of employing EVT without clustering on the mixture data showed large deviations. Real-world bridge traffic LEs are driven by multi-events and present multipeak distributions, and the proposed approach is more capable of capturing the tendency of tailed LEs than the conventional approach. The proposed approach is expected to have wide applications to general problems such as samples that are driven by multiple events and that do not have the identical distribution.

국내 지역별 미세먼지 농도 리스크 분석 (Regional Analysis of Particulate Matter Concentration Risk in South Korea)

  • 오장욱;임태진
    • 한국안전학회지
    • /
    • 제32권5호
    • /
    • pp.157-167
    • /
    • 2017
  • Millions of People die every year from diseases caused by exposure to outdoor air pollution. Especially, one of the most severe types of air pollution is fine particulate matter (PM10, PM2.5). South Korea also has been suffered from severe PM. This paper analyzes regional risks induced by PM10 and PM2.5 that have affected domestic area of Korea during 2014~2016.3Q. We investigated daily maxima of PM10 and PM2.5 data observed on 284 stations in South Korea, and found extremely high outlier. We employed extreme value distributions to fit the PM10 and PM2.5 data, but a single distribution did not fit the data well. For theses reasons, we implemented extreme mixture models such as the generalized Pareto distribution(GPD) with the normal, the gamma, the Weibull and the log-normal, respectively. Next, we divided the whole area into 16 regions and analyzed characteristics of PM risks by developing the FN-curves. Finally, we estimated 1-month, 1-quater, half year, 1-year and 3-years period return levels, respectively. The severity rankings of PM10 and PM2.5 concentration turned out to be different from region to region. The capital area revealed the worst PM risk in all seasons. The reason for high PM risk even in the yellow dust free season (Jun. ~ Sep.) can be inferred from the concentration of factories in this area. Gwangju showed the highest return level of PM2.5, even if the return level of PM10 was relatively low. This phenomenon implies that we should investigate chemical mechanisms for making PM2.5 in the vicinity of Gwangju area. On the other hand, Gyeongbuk and Ulsan exposed relatively high PM10 risk and low PM2.5 risk. This indicates that the management policy of PM risk in the west side should be different from that in the east side. The results of this research may provide insights for managing regional risks induced by PM10 and PM2.5 in South Korea.

Prediction of sharp change of particulate matter in Seoul via quantile mapping

  • Jeongeun Lee;Seoncheol Park
    • Communications for Statistical Applications and Methods
    • /
    • 제30권3호
    • /
    • pp.259-272
    • /
    • 2023
  • In this paper, we suggest a new method for the prediction of sharp changes in particulate matter (PM10) using quantile mapping. To predict the current PM10 density in Seoul, we consider PM10 and precipitation in Baengnyeong and Ganghwa monitoring stations observed a few hours before. For the PM10 distribution estimation, we use the extreme value mixture model, which is a combination of conventional probability distributions and the generalized Pareto distribution. Furthermore, we also consider a quantile generalized additive model (QGAM) for the relationship modeling between precipitation and PM10. To prove the validity of our proposed model, we conducted a simulation study and showed that the proposed method gives lower mean absolute differences. Real data analysis shows that the proposed method could give a more accurate prediction when there are sharp changes in PM10 in Seoul.

Bayesian 기법을 이용한 혼합 Gumbel 분포 매개변수 추정 및 강우빈도해석 기법 개발 (A Bayesian Approach to Gumbel Mixture Distribution for the Estimation of Parameter and its use to the Rainfall Frequency Analysis)

  • 최홍근;오랑치맥솜야;김용탁;권현한
    • 대한토목학회논문집
    • /
    • 제38권2호
    • /
    • pp.249-259
    • /
    • 2018
  • 우리나라의 기후 지형적 특성에 따라 연강수량의 50% 이상이 여름철에 내린다. 이러한 짧은 기간에 집중적으로 내리는 강수량 조건하에 수공구조물을 설계할 경우 대부분 극치빈도분석을 활용한다. 특히 우리나라의 경우 Gumbel 분포를 활용한 극치빈도분석을 많이 이용한다. 하지만, 최근 이상기후로 인하여 전세계적으로 강수량의 특징이 급격히 변하고 있으며, 우리나라 연강수량 특징도 바뀌고 있다. 즉, 기존의 단일 분포형으로 재현이 가능했던 수문기상 자료들이 혼합분포형의 특징을 가지게 되었으며 이러한 변화를 고려할 수 있는 극치빈도분석 개발이 요구되고 있는 실정이다. 본 연구에서는 두 개 이상의 첨두를 가지는 형태의 극치강수량 자료에 대해서 기존의 단일 Gumbel 분포형 기반 극치빈도분석과 혼합 Gumbel 분포형 기반의 극치빈도분석 결과를 비교하였다. 확률분포의 매개변수 산정시 우도함수를 Bayesian 기법을 통해 산정하여 각 분포형의 Bayesian information criterion (BIC) 값을 비교하였다. 분석한 결과, 앞서 제안된 혼합 Gumbel 분포형은 하나의 첨두를 가지는 단일 Gumbel 분포형에서 반영되지 못한 꼬리(tail)부분의 이중첨두 부분의 거동을 효과적으로 모의하는 것을 확인할 수 있었다. 결과적으로 설계강수량을 추정할 때 보다 신뢰성있는 접근이 가능하였다. 이러한 점에서 우리나라 극치강우자료 분석시 기존 단일분포기반의 빈도해석기법에 대안으로 적용이 가능할 것으로 판단된다.

Performance Analysis of Economic VaR Estimation using Risk Neutral Probability Distributions

  • Heo, Se-Jeong;Yeo, Sung-Chil;Kang, Tae-Hun
    • 응용통계연구
    • /
    • 제25권5호
    • /
    • pp.757-773
    • /
    • 2012
  • Traditional value at risk(S-VaR) has a difficulity in predicting the future risk of financial asset prices since S-VaR is a backward looking measure based on the historical data of the underlying asset prices. In order to resolve the deficiency of S-VaR, an economic value at risk(E-VaR) using the risk neutral probability distributions is suggested since E-VaR is a forward looking measure based on the option price data. In this study E-VaR is estimated by assuming the generalized gamma distribution(GGD) as risk neutral density function which is implied in the option. The estimated E-VaR with GGD was compared with E-VaR estimates under the Black-Scholes model, two-lognormal mixture distribution, generalized extreme value distribution and S-VaR estimates under the normal distribution and GARCH(1, 1) model, respectively. The option market data of the KOSPI 200 index are used in order to compare the performances of the above VaR estimates. The results of the empirical analysis show that GGD seems to have a tendency to estimate VaR conservatively; however, GGD is superior to other models in the overall sense.

Financial Distress Prediction Using Adaboost and Bagging in Pakistan Stock Exchange

  • TUNIO, Fayaz Hussain;DING, Yi;AGHA, Amad Nabi;AGHA, Kinza;PANHWAR, Hafeez Ur Rehman Zubair
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권1호
    • /
    • pp.665-673
    • /
    • 2021
  • Default has become an extreme concern in the current world due to the financial crisis. The previous prediction of companies' bankruptcy exhibits evidence of decision assistance for financial and regulatory bodies. Notwithstanding numerous advanced approaches, this area of study is not outmoded and requires additional research. The purpose of this research is to find the best classifier to detect a company's default risk and bankruptcy. This study used secondary data from the Pakistan Stock Exchange (PSX) and it is time-series data to examine the impact on the determinants. This research examined several different classifiers as per their competence to properly categorize default and non-default Pakistani companies listed on the PSX. Additionally, PSX has remained consistent for some years in terms of growth and has provided benefits to its stockholders. This paper utilizes machine learning techniques to predict financial distress in companies listed on the PSX. Our results indicate that most multi-stage mixture of classifiers provided noteworthy developments over the individual classifiers. This means that firms will have to work on the financial variables such as liquidity and profitability to not fall into the category of liquidation. Moreover, Adaptive Boosting (Adaboost) provides a significant boost in the performance of each classifier.