International Journal of Aeronautical and Space Sciences
/
v.17
no.1
/
pp.64-72
/
2016
The coverage area of a GNSS regional ionospheric delay model is mainly determined by the distribution of GNSS ground monitoring stations. Extrapolation of the ionospheric model data can extend the coverage area. An extrapolation algorithm, which combines observed ionospheric delay with the environmental parameters, is proposed. Neural network and least square regression algorithms are developed to utilize the combined input data. The bi-harmonic spline method is also tested for comparison. The IGS ionosphere map data is used to simulate the delays and to compute the extrapolation error statistics. The neural network method outperforms the other methods and demonstrates a high extrapolation accuracy. In order to determine the directional characteristics, the estimation error is classified into four direction components. The South extrapolation area yields the largest estimation error followed by North area, which yields the second-largest error.
In this paper we establish approximation of contraction C-semigroups on the extrapolation space $X^C$, by showing the equicontinuity of contraction C-semigroups on $X^C$.
It is an interest problem to predict substance distributions in three-dimensional space. Recently, a research field as Geostatistics is advanced. It is a kind of inter- or extrapolation mathematically. Some useful means for the inter- and extrapolation are known, in which slide window method with neural networks is hopeful one. We propose multi-dimensional extrapolation using multi-layer neural networks and the slide-window method. The multi-dimensional extrapolation is not similar to one-dimension. It has plural algorithms. We researched line predictors and local-plain predictors I two-dimensional space. The both predictors are equivalent; however, in multi-dimensional extrapolation, it is very important to find the direction of predictions. Especially, since the slide window method requires information to predict the future in sampling data, if they are not ordered appropriately in the direction, the predictor cannot operate. We tested the extrapolation for typical two-dimensional functions, and found an excellent character of slide-window method based on local-plain. By using the method, we can extrapolate the function until twice-outer regions of the definitions.
The completion ('initiation' de facto) of the KASI Orbit Propagator and Estimator (KASIOPEA) has been delayed for several reasons unfortunately. Due to the lack of working staffs and the Division priority rearrangement, the initial plan was dismantled and ignored for many years. However, fundamental researches regarding the essential parts of KASIOPEA has been done by author. The numerical integration module of the KASIOPEA is the most sensitive part in the precision of the final output in general. There is no silver bullet in the numerical integration in an orbit propagation as a non-stiff ODE case. Many numerical integration method like single-step methods, multi-step method, and extrapolation methods have been used in overly populated orbit propagator or estimator. In this study, several popular methods from single-step, multi-step, and extrapolation methods have been tested in numerical accuracy and stability.
When setting up an experiment for extrapolation at multiple points outside the design space, we often face a difficulty in which point we should emphasize even if the polynomial model under consideration is given. In this paper we propose various methods under two possible scenarios that deal with extrapolations. One considered in this paper is the situation when the model assumed can be extended beyond the design space. In this setting, the many classical methods(including various approaches the authors proposed before) were revisited in the context of extrapolation. But the real problem arises when there is an uncertainty concerning the validity of the assumed model. Therefore, the second scenario is to develop an appropriate procedure when we have limited information about model. Consequently, a hybrid approach is suggested to deal with this issue of how to handle the multiple extrapolating under model uncertainty. A search algorithm was implemented because the classical exchange algorithm was found difficult to handle the complexity of the problem.
Inoue, S.;Magara, T.;Choe, G.S.;Kusano, K.;Shiota, D.;Yamamoto, T.T.;Watari, S.
The Bulletin of The Korean Astronomical Society
/
v.37
no.1
/
pp.85.2-85.2
/
2012
In this paper, we introduce the 3D modeling of the coronal magnetic field in the solar active region by extrapolating from the 2D observational data numerically. First, we introduce a nonlinear force-free field (NLFFF) extrapolation code based on the MHD-like relaxation method implementing the cleaning a numerical error for Div B proposed by Dedner et al. 2002 and the multi-grid method. We are able to reconstruct the ideal force-free field, which was introduced by Low & Lou (1990), in high accuracy and achieve the faster speed in the high-resolution calculation (512^3 grids). Next we applied our NLFFF extrapolation to the solar active region NOAA 10930. First of all, we compare the 3D NLFFF with the flare ribbons of Ca II images observed by the Solar Optical Telescope (SOT) aboard on the Hinode. As a result, it was found that the location of the two foot-points of the magnetic field lines well correspond to the flare ribbon. The result indicates that the NLFFF well capture the 3D structure of magnetic field in the flaring region. We further report the stability of the magnetic field by estimating the twist value of the field line and finally suggest the flare onset mechanism.
In this study, we extrapolate a nonlinear force-free field (NLFFF) from an observed photospheric magnetic field to understand the three-dimensional (3D) coronal magnetic field producing a huge solar flare. The purpose of this study is to develop a NLFFF extrapolation code based on the so-called MHD relaxation method and check how accurately our model reconstructs a coronal field. Furthermore, we apply it to the photospheric magnetic field obtained by Helioseismic and Magnetic Imager (HMI) on board Solar Dynamics Observatory (SDO) to reconstruct a 3D magnetic structure. We first investigate factors in controlling the accuracy of our NLFFF code by using a semi-analytical solution obtained by Low & Lou (1990). To extend a work done by Inoue et al. (2014), we apply various boundary conditions at the side and top boundaries in order to make our solution close to a realistic solution. As a consequence, our solution has a good accuracy when three components of a reference field are all fixed at the boundaries. Furthermore, it is also found that our solution is well matched to the Low & Lou solution in the central area of a simulation domain when the three components of a potential field are fixed at side and top boundaries (this approach is close to a realistic solution). Finally, we present the 3D coronal magnetic field producing an X 1.5-class flare in the active region 11166 through the extrapolation from SDO/HMI.
In this study, a deep learning-based network that can predict the aerodynamic characteristics of airfoils was designed, and the feasibility of the proposed network was confirmed by applying aerodynamic data generated by Xfoil. The prediction of aerodynamic characteristics according to the variation of airfoil thickness was performed. Considering the angle of attack, the coordinate data of an airfoil is converted into image data using signed distance function. Additionally, the distribution of the pressure coefficient on airfoil is expressed as reduced data via proper orthogonal decomposition, and it was used as the output of the proposed network. The test data were constructed to evaluate the interpolation and extrapolation performance of the proposed network. As a result, the coefficients of determination of the lift coefficient and moment coefficient were confirmed, and it was found that the proposed network shows benign performance for the interpolation test data, when compared to that of the extrapolation test data.
Global map of solar surface magnetic field, such as the synoptic map or daily synchronic frame, does not tell us real-time information about the far side of the Sun. A deep-learning technique based on Conditional Generative Adversarial Network (cGAN) is used to generate farside magnetograms from EUVI $304{\AA}$ of STEREO spacecrafts by training SDO spacecraft's data pairs of HMI and AIA $304{\AA}$. Farside(or backside) data of daily synchronic frames are replaced by the Ai-generated magnetograms. The new type of data is used to calculate the Potential Field Source Surface (PFSS) model. We compare the results of the global field with observations as well as those of the conventional method. We will discuss advantage and disadvantage of the new method and future works.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.