• Title/Summary/Keyword: extraction with solvent

Search Result 1,181, Processing Time 0.03 seconds

Effect of Extraction Condition on the Content of EGCG and Caffeine of Green Tea: Comparison with the Inhibitory Activity on Pancreatic Lipase

  • Lee, Eun Song;Lee, Mi Kyeong
    • Natural Product Sciences
    • /
    • v.19 no.2
    • /
    • pp.166-172
    • /
    • 2013
  • Caffeine and epigallocatechin gallate (EGCG) are major constituents of green tea, the leaves of Camellia sinensis (Theaceae). Although EGCG is well known for diverse beneficial effect, caffeine is sometimes harmful with adverse effects. Therefore, the extraction efficiency was investigated using different extraction method such as extraction solvent, extraction time, extraction method, and repeated extraction. The content of EGCG and caffeine in green tea extract was quantitated by HPLC analysis. The extraction condition exerted difference on the extraction yield. The content of EGCG was also affected by different extraction condition. Especially, the extraction solvent greatly affected the content of EGCG in the extract. However, the content of caffeine was less affected compared to that of EGCG. The inhibitory effect of green tea extract on pancreatic lipase was almost similar regardless of extraction condition. Taken together, optimization of extraction condition will provide best efficacy for further development of green tea as anti-obesity therapeutics.

Optimization and Bioassay Guided Comparative Techniques for Efficient Extraction of Lutein Esters from Tagetes erecta (Var. Pusa Narangi Genda) Flowers

  • Kawar Lal Dabodhia;Brijesh Tripathi;Narendra Pal Lamba;Manmohan Singh Chauhan;Rohit Bhatia;Vivek Mishra
    • Mass Spectrometry Letters
    • /
    • v.15 no.1
    • /
    • pp.40-48
    • /
    • 2024
  • Capacity of the analytical/quantitative evaluation techniques to satisfy both qualitative and quantitative considerations for effective extraction of marigold oleoresins/xanthophylls and their potential as anti-mycotic and antioxidant activity was assessed. Accelerated solvent extraction (ASE), Soxhlet extraction (SE), Supercritical fluid extraction (SCFE), Cold extraction (CE), and ultrasonically assisted extraction (USE) techniques were evaluated for extraction of oleoresin/xanthophyll content from Tagetes erecta (Var. Pusa Narangi Genda) with respect to solvent consumption, extraction time, reproducibility, and yield. Followed by the antifungal and antioxidant activity evaluation. The overall yield of Tagetes oleoresin was higher in ASE (64.5 g/kg) followed by SE (57.3 g/kg), USE (50.7 g/kg), SCFE (45.3 g/kg) and CE (31.6 g/kg). The lutein esters represented more than 80% of the constituents. Further, xanthophyll/ lutein content in oleoresin was found to be quite higher in HPLC (r2 = 0.996) analysis than in the AOAC recommended UV spectrophotometer analysis. The oleoresin exhibited moderate antioxidant activity (DPPH assay) and antifungal activity against three phytopathogenic fungi. Based on the various parameters, the reproducibility of ASE was better (0.3-8.0%) than that of SE (0.5-12.9%), SCFE (0.2-9.4%), USE (0.3-12.4%) and CE (0.8-15.3%). ASE with (RSD 1.6%) is preferred being faster, reproducible, uses less solvent, robust and automation allows sequential extraction of the sample in less time.

Estimation of Interaction Parameter of FeCl+ from Hydrochloric Acid Solution by Solvent Extraction with Amine

  • Lee, Man-Seung;Nam, Sang-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3429-3432
    • /
    • 2011
  • Distribution diagram of $FeCl_2$ in HCl solution indicated that $FeCl^+$ was a predominant species in strong HCl solution up to 10 M. Solvent extraction of $FeCl_2$ has been performed in the HCl concentration range from 5 to 9 M by using Alamine336 as an extractant. Interaction parameter of $FeCl^+$ for Bromley equation was estimated from our solvent extraction data. This parameter thus obtained in our study can be employed in calculating the activity coefficient of $FeCl^+$ in high concentration of HCl.

Ultrasonic Extraction of Phenolic Compounds from Laminaria japonica Aresch Using Ionic Liquid as Extraction Solvent

  • Han, Dandan;Zhu, Tao;Row, Kyung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2212-2216
    • /
    • 2011
  • An ionic liquid-based ultrasonic-assisted extraction method has been successfully applied to the effective extraction of phenolic compounds from Laminaria japonica Aresch. Three kinds of 1-alkyl-3-methyl-imidazolium with different cations and anions were evaluated for extraction efficiency. The results showed that both the characteristics of anions and cations have remarkable effects on the extraction efficiency. In addition, the ionic liquid-based ultrasonic-assisted extraction procedure was also optimized on some extraction parameters, such as ultrasonic power, extraction time and solid-liquid ratio. Compared with the conventional solvent, the optimum approach gained the highest extraction efficiency within the shortest extraction time. Average recoveries of phenolic compounds were from 75.5% to 88.3% at three concentration levels.

Optimization of Extraction Conditions for Total Phenolics from Sapium japonicum Using a Pressurized Liquid Extractor

  • Kim, Mi-Bo;Park, Jae-Sung;Lim, Sang-Bin
    • Food Science and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.996-1000
    • /
    • 2009
  • Sapium japonicum was extracted by a pressurized liquid. Operating parameters such as the type and the ratio of solvent to water, temperature, pressure, and number of extractions were investigated as the main variables that influence the extraction efficiencies of total phenolics (TP). MeOH extracted the highest level of TP as 50.4 mg GAE/g compared to 48.8 and 27.2 mg GAE/g with $H_2O$ and EtOH, respectively. $EtOH:H_2O$ (40:60, v/v) was found to be the best solvent for TP extraction as 90.3 mg GAE/g compared to 85.0 and 84.3 mg GAE/g in 40:60 and 60:40 of $MeOH:H_2O$, respectively. TP were increased with the increase of the number of extraction steps. TP content was increased by 11% as the extraction temperature was increased from 40 (97.4) to $50{\circ}C$ (108.3 mg GAE/g). The optimum extraction conditions of TP were; extraction solvent, $EtOH:H_2O$ (40:60, v/v); temperature, $50{\circ}C$; pressure, 10.2 MPa; 2 extraction steps.

Application of Solvent Extraction to the Treatment of Industrial Wastes

  • Shibata, Junji;Yamamoto, Hideki
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.259-263
    • /
    • 2001
  • There are several steps such as slicing, lapping, chemical etching and mechanical polishing in the silicon wafer production process. The chemical etching step is necessary to remove damaged layer caused In the slicing and lapping steps. The typical etching liquor is the acid mixture comprising nitric acid, acetic acid and hydrofluoric acid. At present, the waste acid is treated by a neutralization method with a high alkali cost and balky solid residue. A solvent extraction method is applicable to separate and recover each acid. Acetic acid is first separated from the waste liquor using 2-ethlyhexyl alcohols as an extractant. Then, nitric acid is recovered using TBP(Tri-butyl phosphate) as an extractant. Finally hydrofluoric acid is separated with the TBP solvent extraction. The expected recovered acids in this process are 2㏖/l acetic acid, 6㏖/1 nitric acid and 6㏖/l hydrofluoric acid. The yields of this process are almost 100% for acetic acid and nitric acid. On the other hand, it is important to recover and reuse the metal values contained in various industrial wastes in a viewpoint of environmental preservation. Most of industrial products are made through the processes to separate impurities in raw materials, solid and liquid wastes being necessarily discharged as industrial wastes. Chemical methods such as solvent extraction, ion exchange and membrane, and physical methods such as heavy media separation, magnetic separation and electrostatic separation are considered as the methods for separation and recovery of the metal values from the wastes. Some examples of the application of solvent extraction to the treatment of wastes such as Ni-Co alloy scrap, Sm-Co alloy scrap, fly ash and flue dust, and liquid wastes such as plating solution, the rinse solution, etching solution and pickling solution are introduced.

  • PDF

Extraction Equilibria and Solvent Sublation for Determination of Ultra Trace Bi(Ⅲ), In(Ⅲ) and TI(Ⅲ) in Water Samples by Ion-Pairs of Metal-2-Naphthoate Complexes and Tetrabutylammonium Ion

  • Kim, Young-Sang;Choi, Yoon-seok;Lee, Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.10
    • /
    • pp.1381-1391
    • /
    • 2002
  • The solvent sublation using ion pairs of metal-2-naphthoate(2-HNph) and tetrabutyl ammonium ($TBA^+$) ion has been studied for the concentration and determination of ultra trace Bi(III), In(III) and Tl(Ⅲ) ions in water samples. The partition coefficients ($K_p$) and the extraction percentages of 2-HNph and the ion pairs to methyl isobutyl ketone (MIBK) were obtained as basic data. After the ion pair $TBA^+$·M$(Nph)_4^-$ was formed in water samples, the analytes were concentrated by the solvent sublation and the elements were determined by GF-AAS. The pH of the sample solution, the amount of the ligand and counter ion added and stirring time were optimized for the efficient formation of the ion pair. The type and amount of optimum surfactant, bubbling time with nitrogen and the type of solvent were investigated for the solvent sublation as well. 10.0 mL of 0.1 M 2-HNph and 2.0 mL of 0.1 M $TBA^+$ were added to a 1.0 L sample solution at pH 5.0. After 2.0 mL of 0.2%(w/v) Triton X-100 was added, the ion pairs were extracted into 20.0 mL MIBK in a flotation cell by bubbling. The analytes were determined by a calibration curve method with measured absorbances in MIBK, and the recovery was 80-120%.

Effect of Some Factors on Oleoresin Extraction from Red Pepper (고추 Oleoresin의 추출에 영향을 미치는 몇가지 인자)

  • Jo, Kil-Suk;Kim, Hyun-Ku;Park, Mu-Hyun;Nam, Eun-Sook;Kang, Kook-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.137-141
    • /
    • 1992
  • To investigate some factors on oleoresin extraction from red pepper, the content of yield, capsanthin and capsaicin in oleoresin extracted under various factors such as solvent, variety of materials, extraction time and temperature, storage condition of dried red pepper and its parts, particle size of raw material powder and the ratios of red pepper powder to extraction solvent were investigated. Ethyl alcohol and ethylene dichloride were effective in extracting capsanthin and capsaicin from red pepper, respectively. Mixed-solvent bore fruitful in increasing of oleoresin yield, but was fruitless in extracting capsanthin and capsaicin in comparison with single-solvent. In three varieties such as Juktoma, Jinsol and Dabok, Jinsol was excellent in oleoresin extraction. Optimum extracting temperature and time was $20^{\circ}C$ and three to five hours, respectively. Oleoresin quality from long-term storage and/or coarse red pepper were low in point of yield, capsanthin and capsaicin. Capsanthin and capsaicin were distributed into pericarp and seed in abundance, respectively. Optimum mixing ratio of red pepper powder to extracting solvent was suitable for one to three(1 : 3) or one to four(1 : 4) in oleoresin extraction.

  • PDF

Separation of Aromatics in Light Cycle Oil by Solvent Extraction - Re-extraction of Aromatics in Extract Phase - (용매 추출법에 의한 분해경유중의 방향족 분리 -추출상중의 방향족의 역수출-)

  • Kim, Su Jin;Kim, Duk-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.967-972
    • /
    • 1997
  • Recovery of aromatics in extract phase which was obtained by batch equilibrium extraction between light cycle oil(LCO) and dimethylsulfoxide(DMSO) solution as solvent was investigated by re-extraction. To select the most suitable re-extraction solvent for recovery of aromatics in extract phase, distribution equilibrium was measured between extract phase and solvents. The solvents used were benzene(B), toluene(T), m-Xylene(mX), n-hexane(Hx) and n-hexane(Hx) and n-Octane(Ot). From the distribution coefficients and yields of aromatics, Hx seemed to be the most suitable. Furthermore, effects of operation parameters for re-extraction of aromatics in the extract phase were studied by batch equilibrium re-extracion with Hx as solvent. Yields of aromatics were found to increase with increasing solvent/feed (extract phase) mass ratio(S/F), while distribution coefficients of aromatics were fixed irrespective of S/F used. Operating temperature did not affect distribution coefficients and yields of aromatics. Distibution coefficients and yields of naphthalene group(carbon numer : 10~12) increased with increasing cabon number. Mass transfer rates of aromatics were also measured with a batch stirred vessel.

  • PDF

Optimization of Extraction Conditions of Torilin, a Melanogenesis Inhibitor from Torilis japonica Fruits (사상자 미백성분 Torilin의 추출조건 최적화)

  • Jo, Yang Hee;Ahn, Jong Hoon;Song, Da Hye;Hwang, Bang Yeon;Lee, Mi Kyeong
    • Korean Journal of Pharmacognosy
    • /
    • v.49 no.1
    • /
    • pp.65-69
    • /
    • 2018
  • Torilin is a major sesquiterpene of Torilis japonica (Umbelliferae) fruits and known to be a melanogenesis inhibitor. Extraction conditions are important factor for the efficient preparation to save cost and time in economic aspects. For this reason, this study was conducted to optimize the extraction condition for maximal yield of torilin. For optimization, extraction factors such as extraction solvent, extraction temperature and sample/solvent ratio were tested and optimized for maximum yield of torilin using response surface methodology with Box-Behnken design (BBD). The optimal condition was obtained as a EtOAc concentration in MeOH of 31.8%, an extraction temperature at $30.3^{\circ}C$ and a sample/solvent ratio, 1000 mg/2 ml. The torilin yield under optimal conditions was found to be 9.9 mg/g dried samples, which were well-matched with the predicted value of 10.4 mg/g dried samples. These results will provide useful information about optimized extraction conditions for the development of torilin as cosmetic therapeutics to reduce skin hyperpigmentation.