• Title/Summary/Keyword: extraction with solvent

Search Result 1,183, Processing Time 0.025 seconds

Extraction of Lipids from Microalgae Using Polar and Nonpolar Bi-solvent Systems (이성분 용매 추출에 의한 미세조류로 부터의 바이오디젤용 지질 분리)

  • Hong, Yeon-Ki;Kim, Jeong-Bae;Ng, K.Y. Simon
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.6
    • /
    • pp.66-71
    • /
    • 2011
  • Various single solvents were tested to find the effective solvent for the extraction of algae oil from wet-form Chlorella minutissima. In the case of single solvents, their extractabilities for algae oil were increased with their polarity because the water in wet algae cell is to form a solvent shell around the lipids. Based on these results, the wet-form algae samples were treated with a polar alcohol solvent and then a nonpolar solvent was added in algae residue. In the algae oil extraction by ethanol/n-hexane, total lipid contents were 40-50% and composition of triglyceride in extracted oil was 46.50%. Considering solvent toxicity of conventional solvent mixture such as chloroform and methanol for algae oil extraction, the ethanol/n-hexane system was identified as the effective one for the oil extraction from wet-form Chlorella minutissima.

Use of Accelerated Solvent Extraction Method for Determination of Residual Pesticides in Agricultural Products (농산물의 잔류농약분석을 위한 가속용매추출 (Accelerated Solvent Extraction) 방법의 이용)

  • Lee, Sung-Woo;Seo, Hye-Young;Han, Byung-Jae;Jeong, Yang-Mo;Kim, Jun-Hyoung;No, Ki-Mi;Kim, Kyong-Su
    • Applied Biological Chemistry
    • /
    • v.47 no.2
    • /
    • pp.228-237
    • /
    • 2004
  • ASE (accelerated solvent extraction) was used to develop an analytical method for reducing the sample preparation time in pesticide residues analyses of agricultural produce. The conditions of ASE were as follows: preheat 1 min, heat 5 min, static 1 min, solvent flush% 60 vol., nitrogen purge 60 sec, 4 cycles, 1,500 psi pressure, and $100^{\circ}C$ temperature. When n-hexane:acetone (4 : l, v/v) was used as, an extraction solvent, the extraction and purification efficiency of ASE did not show the considerable difference compared with solvent extraction, and the reduction of extraction solvent did not affect the performance of extraction. It was proved that ASE method can reduce, sample preparation time as the extraction and purification steps were combined, and the extraction solvent was significantly reduced.

Improvement of Hydrocarbon Recovery by Two-Stage Cell-Recycle Extraction in the Cultivation of Botryococcus braunii

  • An, Jin-Young;Sim, Sang-Jun;Kim, Byung-Woo;Lee, Jin-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.932-937
    • /
    • 2004
  • In situ extraction by organic solvent was studied in order to improve the recovery yield of hydrocarbon from the culture of Botryococcus braunii, a green colonial microalga. When the solvent mixture of octanol as an extractive solvent and n-octane as a biocompatible solvent was added to a two-phase column, the algal growth was seriously inhibited, even at a low concentration of polar octanol. Therefore, a two-stage cell-recycle extraction process was proposed to improve the contact area between the organic phase and the aqueous phase. The hydrocarbon recovery with in situ cell-recycle extraction showed a three-fold increase (57% of cell) in yield over that with two-phase extraction. In addition, over 60% of the hydrocarbon could be recovered without serious cell damage by downstream separation when this process was applied to the culture broth after batch fermentation.

Simultaneous Extraction and Separation of Oil and Azadirachtin from Seeds and Leaves of Azadirachta indica using Binary Solvent Extraction

  • Subramanian, Sheela;Salleh, Aiza Syuhaniz;Bachmann, Robert Thomas;Hossain, Md. Sohrab
    • Natural Product Sciences
    • /
    • v.25 no.2
    • /
    • pp.150-156
    • /
    • 2019
  • Conventional extraction of oil and azadirachtin, a botanical insecticide, from Azadirachta indica involves defatting the seeds and leaves using hexane followed by azadirachtin extraction with a polar solvent. In order to simplify the process while maintaining the yield we explored a binary extraction approach using Soxhlet extraction device and hexane and ethanol as non-polar and polar solvents at various ratios and extraction times. The highest oil and azadirachtin yields were obtained at 6 h extraction time using a 50:50 solvent mixture for both neem leaves (44.7 wt%, $720mg_{Aza}/kg_{leaves}$) and seeds (53.5 wt%, $1045mg_{Aza}/kg_{leaves}$), respectively.

Optimization of Extraction Process for Mass Production of Paclitaxel from plant Cell Cultures (Paclitaxel 대량생산을 위한 추출공정 최적화)

  • 김진현
    • KSBB Journal
    • /
    • v.15 no.4
    • /
    • pp.346-351
    • /
    • 2000
  • Several solvents or combinations of solvents were tested for the extraction of wet or dried biomass at different extraction mode from plant cell cultures. Methanol gave the highest paclitaxel recovery with the least amount of solvent usage. before extraction drying of biomass wass helpful to decrease solvent usage in extraction step./ in this case drying method was very important to obtain high yield from dried biomass. In thid mode of operation counter-current extraction process can be able to decrease solvent usage but paclitaxel recovery was almost same with both batch and counter-current mode of operation. The number of extraction times was at least four to obtain high yield(>99%) from cell and one to obtain highyield(>96%) from cell debris in batch mode. Equilibrium (i.e. the ratio of paclitaxel in biomass to paclitaxel in the extraction solvent) was reached within 5 minutes. The minimum methodal concentration (90%) and solvent amount(biomass : solvent=1 Kg : 1L) are enough to obtain high yield(>98%) for extraction from biomass.

  • PDF

Optimization of Oil from Moringa oleifera seed using Soxhlet Extraction method

  • Ojewumi, M.E.;Oyekunle, D.T.;Emetere, M.E.;Olanipekun, O.O.
    • The Korean Journal of Food & Health Convergence
    • /
    • v.5 no.5
    • /
    • pp.11-25
    • /
    • 2019
  • Extraction of oil from Moringa oleifera seed using Response Surface Methodology (RSM) was investigated. Effects of three factors namely: sample mass, particle size and extraction time on the response, Moringa oleifera a volume extracted, were determined. The Box-Behnken design of RSM was employed which resulted in 15 experimental runs. Extraction was carried out in a 250 ml Soxhlet extractor with Hexane and Ethanol as solvent. The Moringa oleifera seed powder was packed inside a muslin cloth placed in a thimble of the Soxhlet extractor. The extraction was carried out at 60℃ using thermostatic heating mantle. The solvent in the extracted oil was evaporated and the resulting oil further dried to constant weight in the oven. This study demonstrates that Moringa oleifera oil can be extracted from its seed using ethanol and acetone as extraction solvent. The optimum process variables for both solvent (ethanol and acetone) was determined at sample weight of 40 g, particle size of 325 ㎛ and extraction time of 8 hours. It can be deduced that using acetone as solvent produces a higher yield of oil at the same optimum variable conditions compared to when ethanol was used.

Monitoring on Extraction Yields and Functional Properties of Brassica oleracea var. capita Extracts

  • Kim, Hyun-Ku;Lee, Gee-Dong;Kwon, Joong-Ho;Kim, Kong-Hwan
    • Food Science and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.836-840
    • /
    • 2005
  • Extraction characteristics of Bonus species of Brassica oleracea var. capita and functional properties of corresponding extract were monitored by response surface methodology (RSM). Maximum extraction yield of 44.07% was obtained at ratio of solvent to sample of 27.94 mL/g, ethanol concentration of 24.35%, and extraction temperature of $55.21^{\circ}C$. At ratio of solvent to sample, ethanol concentration, and extraction temperature of 21.11 mL/g, 58.53%, and $68.83^{\circ}C$, respectively, maximum electron-donating ability was 48.44%. Maximum inhibitory effect on tyrosinase was 68.94% at ratio of solvent to sample, ethanol concentration, and extraction temperature of 24.08 mL/g, 10.49%, and $78.71^{\circ}C$, respectively. Superoxide dismutase (SOD) showed maximum pseudo-activity of 24.78% at ratio of solvent to sample of 22.66 mL/g, ethanol concentration of 45.69%, and extraction temperature of $93.81^{\circ}C$. Based on superimposition of four-dimensional RSM with respect to extraction yield, electron-donating ability, and pseudo-activity of SOD, optimum ranges of extraction conditions were ratio of solvent to sample of 20-30 mL/g, ethanol concentration of 35-65%, and extraction temperature of $50-80^{\circ}C$.

Optimal Organic Solvent Extraction Method for Dewaxing of Beeswax-treated Hanji (밀랍도포한지의 탈랍을 위한 최적 유기용매 추출기법 탐색)

  • Choi, Do-Chim;Choi, Eun-Yeon;Jo, Byoung-Muk;Cho, Byoung-Uk
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.6
    • /
    • pp.50-57
    • /
    • 2012
  • In this study, the beeswax extraction methods using organic solvents were examined to develop a optimal dewaxing technology for beeswax-treated Hanji. Thermally-aged beeswax-treated Hanji was dewaxed using four types of extraction methods including dipping, Soxhlet extraction, ultrasonic washing and shaking methods. Then, the aging stability of the dewaxed Hanji was evaluated in terms of variations in paper strength and in the color of the printed area with muk. The experimental results suggested that the dewaxing methods allowing solvent to flow during extraction showed superior extraction efficiency. The dipping method in which the organic solvent does not flow showed the slowest extraction rate of beeswax compared to three other methods. In terms of variations in tensile strength and folding endurance, however, no obvious differences in the aging stability were observed amongst these four extraction methods. Regarding the aging stability in terms of the color of the printed area with muk, Soxhlet extraction method showed the best performance of dewaxing.

Effect of Solvents on Reactive Extraction of Acrylic Acid (Acrylic Acid의 반응추출에 미치는 용매의 영향)

  • 이상훈;신정호
    • Journal of Environmental Science International
    • /
    • v.7 no.6
    • /
    • pp.753-759
    • /
    • 1998
  • In physical and reactive extraction of acrylic acid using various solvents the equilibrium characteristics of extraction were investigated. The degree of extraction in reactive extraction with Tri-n-octylamine(TOA) was 1.5~3 times than that in physical extraction. Distribution ratio was constant in methyl isobutyl ketone(MIBK) and n-butylacetate(n-BAc) but was increased with increasing the concentration of acrylic acid in benzene and chloroform. It can be explained by formation of dimers. Maximum extraction leadings of acrylic acid were three in benzene and were two in MIBK, chloroform and n-BAc, and it was found that acrylic acid was extracted as the form of $A_3$R In benzene and $A_2R$ in MIBK, chloroform and n-BAc. In effect of solvent, the degree of extraction was increased as he difference of solubility parameter of solvent and solute was decreased, and as dielectric constant of solvent was increased.

  • PDF

Properties of Chopi Oleoresin Extracted with Various Solvents and Effects of Extraction Conditions on Volatile Components (초피 Oleoresin 제조시 용매에 따른 추출물특성과 추출조건에 따른 휘발성 성분 변화)

  • 최용희;허상선;배동호;김상욱
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.3
    • /
    • pp.406-412
    • /
    • 1998
  • Such extraction conditions as the kinds of solvent, extracting temperature, extracting time, ratio of material to solvent and particle size of material, were studied to maximize the extraction of oleoresin from chipi. Larger amount of soluble solids were extracted from seeds with nonpolar solvents (hexane, pentane, ether) for extraction, because the seeds contained large amount of crude fats and monoterpene(limonene) volatile compounds. Larger amount of soluble solids were extracted from peel with polar solvents(methanol, ethanol) of extraction because of large amount of water soluble colors, sugars and oxygenated terpene bolatile compounds in the peel. The application of the solvents in intermediate polarity (dichloromethane, acetone) resulted in more effective extraction of soluble solid and volatile compounds. Expecially, dichloromethane was an excellent solvent in extraction of volatile compounds. In the concern of volatile compound recovery yield, the optimum extraction conditions, such as temperature, time, mixing ratio of material to dichloromethane and mean particle size, were $25^{\circ}C$, 10min, 1:10(w/v), 355~250${\mu}{\textrm}{m}$ for chopi peels and 3$0^{\circ}C$, 10min, 1:8(w/v), 355~250${\mu}{\textrm}{m}$ for chopi seeds, respectively.

  • PDF