• Title/Summary/Keyword: extracted liquid

Search Result 762, Processing Time 0.031 seconds

Impact of Korean Malting Barley Varieties on Malt Quality

  • Young-Mi Yoon;Jin-Cheon Park;JaeBuhm Chun;Yang-Kil Kim;Hyeun-Cheol Cheo;Chang-Hyun Lee;Seul-Gi Park;Tae-Il Park
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.18-18
    • /
    • 2022
  • Barley has been used for the production of malt in the brewing industry. Malting is the process of preparing barley through partial germination. Malt extract is the most important quality parameter for malt quality. The grain and malt quality parameters of ten Korean malting barley varieties were studied. Malts was prepared using Phoeix automated micro malting system(Phoenix Bio, Australia). Quality analysis of Barley and malt was determined according to European brewery convention(EBC, 1998) and American society of brewing chemists(ASBC, 1997) method. And the hordeins of barley and malt were extracted with 50% isopropyl alcohol(IPA, 2-propanol) of 1% dithiothreitol(DTT). The analysis of hordeins was carried out by ultra-performance liquid chromatography(UPLC). The mean values of 1000-grains weight, assortment rate, protein content, starch content, beta-glucan content, husk rate, germination energy, germination capacity and water sensitivity of grain were 45.8g, 86.8%, 11.9%, 58.0%, 3.8%, 14.0%, 96.2%, 97.2%, 10.0%, respectively. The mean values of protein content, friability, diastatic power, extract, soluble protein, Kolbach index, beta-glucan of malt and wort were 11.3%, 87.6%, 201WK(Windish Kolbach), 79.3%, 4.6%, 41%, 85mg/L, respectively. UPLC analysis of grain and malt hordeins revealed that the amount of hordeins significantly degraded during malting. Also, we could successfully be used to compare hordein polypeptide patterns with malt quality.

  • PDF

Quantitative Comparison of Cinnamomi Cortex and Various Cinnamon Barks using HPLC Analysis (육계 및 기원종별 계피의 지표성분 함량 비교)

  • Han-Young Kim;Jung-Hoon Kim
    • The Korea Journal of Herbology
    • /
    • v.39 no.3
    • /
    • pp.23-35
    • /
    • 2024
  • Objective : In this study, we performed quantitative comparison on the content of 10 marker compounds in cinnamon barks from different species and found chemical discrimination between genuine Cinnamomum cassia and other Cinnamomum species (Non C. cassia). Methods : Cinnamon bark samples were extracted using the ultrasonication in 100% methanol for 30 minutes. The samples were analysed using high-performance liquid chromatography with statistical analysis. Results : The analytical method developed in this study met all validation criteria and was applied to the quantification of the 10 marker compounds in cinnamon bark samples. The major chemical discrimination of C. cassia were identified as low content of epicatechin and eugenol, and high contents of benzaldehyde, cinnamaldehyde and cinnamic acid compared to other Non C. cassia samples. Especially, among other compounds, the content of cinnamaldehyde was the highest in the C. cassia and Non C. cassia samples. The result of principal component analysis showed that the samples of C. cassia and Non C. cassia were clearly differentiated via benzaldehyde, cinnamaldehyde, cinnamic acid, eugenol, and epicatechin, which influenced on clustering C. cassia and Non C. cassia samples. Conclusion : C. cassia and Non C. cassia samples were chemically discriminated using the quantitative HPLC analysis. Based on this, it is possible to control the quality of herbal medicines containing Cinnamomi Cortex. It is necessary to further improve the accuracy of discrimination between C. cassia and Non C. cassia species to evaluate cinnamon bark quality.

Fatty Acid Profile and Thermal Behavior of Fat-Rich Edible Insect Oils Compared to Commonly Consumed Animal and Plant Oils

  • Kasidate Chantakun;Tanyamon Petcharat;Saowakon Wattanachant;Muhammad Shahrim Bin Ab Karim;Pensiri Kaewthong
    • Food Science of Animal Resources
    • /
    • v.44 no.4
    • /
    • pp.790-804
    • /
    • 2024
  • This study compared the physicochemical properties of edible insect oils from silkworm (Bombyx mori) pupa (SP), sago palm weevil (Rhynchophorus ferrugineus) larva (PW), and bamboo caterpillar (Omphisa fuscidentalis; BC) to oils from chicken skin (CK), beef back fat (BF), pork back fat (PF), salmon belly (SB), sea bass belly (BB), coconut (C), and peanut (P). The fatty acid profiles and thermal behaviors (crystallization and melting) of the extracted oils were evaluated. PW and BC oils had more saturated fatty acids (SFAs) than CK, PF, SB, BB, and P oils. SP oil had equivalent SFA content to CK and BB oils. Insect oils exhibited similar monounsaturated fatty acid concentrations in all samples, except C oils. PW and BC oils exhibited a higher content of palmitoleic acid than the other oils. SP oils contained polyunsaturated fatty acids similar to those in SB and BB oils, which were higher than those in PW, BC, CK, BF, and PF oils. SP oil also exhibited the highest concentration of α-linolenic acid (C18:3 n-3). Arachidonic acid (0.01-0.02 g/100 g) in all insect oils was lower level compared to CK, BF, PF, SB, and BB oils. SP oil (0.03 g/100 g) exhibited a slightly higher level of eicosapentaenoic acid compared to PW (0.01 g/100 g) and BC (0.01 g/100 g) oils. The insect oils were liquid at ambient temperature, solid below -15℃, and required less energy (∆Hm-max) for melting than other samples. This study indicated that insects, particularly SP, could serve as an alternative source of fat to meet its growing demand.

Determination of Carazolol and Azaperone in Livestock and Fishery Products Using Liquid Chromatography-tandem Mass Spectrometry (축수산물에서 LC-MS/MS를 이용한 카라졸롤 및 아자페론 분석)

  • Choi, Soo Yeon;Kang, Hui-Seung;Kim, Joohye;Cheon, So-Young;Jeong, Jiyoon;Cho, Byung-Hoon;Lee, Kang-Bong
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.3
    • /
    • pp.176-184
    • /
    • 2018
  • The aim of the present work was to develop simultaneous methods of quantification of carazolol, azaperone, and azaperol residues in livestock and fishery products using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Samples were extracted from beef, pork, chicken, egg, milk and shrimp using acetonitrile (ACN); while flat fish and eel were extracted using 80% ACN. For purification, ACN saturated n-hexane was used to remove fat composition. The standard calibration curves showed good linearity as correlation coefficients; $r^2$ was > 0.99. Average recoveries expressed were within the range of 67.9-105% for samples fortified at three different levels ($0.5{\times}MRL$, $1{\times}MRL$ and $2{\times}MRL$). The correlation coefficient expressed as precision was within the range of 0.55-7.93%. The limit of quantification (LOQ) was 0.0002-0.002 mg/kg. The proposed analytical method showed high accuracy and acceptable sensitivity based on Codex guideline requirements (CAC/GL71-2009). This method can be used to analyze the residue of carazolol, azaperone, and azaperol in livestock and fishery products.

Studies on the Lipid Components of Korean Rapeseed Oil (한국산(韓國産) 평지씨 기름의 지방질(脂肪質) 성분(成分)에 관한 연구)

  • Kang, Sook;Lee, Kang-Hyon;Shin, Hyo-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.115-121
    • /
    • 1980
  • The oils extracted with n-hexane from 6 samples of rapeseed (5 Korean samples and 1 Canadian sample) and samples of rapeseed salad oil at the market in Korea were examined. The physical and chemical characteristics of the oils were determined, and the lipid components of the oils were determined by column, thin layer-and gas liquid chromatography. The results obtained were as follows 1. The average crude fat contents in rapeseed was 43.3 % and the content of Korean was higher than that of Canadian by about 3 %. 2. The average values of specific gravity-, refractive-index, saponification value, iodine value, acid value and nonsaponifiable content of the crude oils extracted from Korean rapeseed were 0.9133, 1.4726, 103.6, 0.51 and 1.17%, respectively. 3. The average content of polar and nonpolar in total lipids were 2.7 % and 97.3 % respectively. Triglyceride was the predominant in nonpolar fraction, averaging 92.7 % of total lipids while sterol esters and diglycerides constituted 1.5 % and 1.2 % of the total. Monoglycerides, free fatty acids and free sterols were minor components of the nonpolar fraction. The polar lipids were primarily phospholipids(1.8%), but a significant amount of glycolipid (0.7%) was also found in each oil. 4. The fatty acid compositions in the total lipids showed the Korean rapeseeds averaged 46.7 % erucic, 15 % oleic, 13.4 % linoleic, 9.3 % eicosenoic and 4.3 % palmitic acids. The Canadian rapeseed, however, contained only 0.7 % of erucic acid. 5. The fatty acid compositions in nonpolar lipid fractions was similar to the pattern in those of the total lipids. But phospholipid and glycolipid fractions were lower in erucic acid content than nonpolar lipid fractions.

  • PDF

Determination of Heterocyclic Amines in Roasted Fish and Shellfish by Liquid Chromatography-Electrospray Ionization/Mass Spectrometry (Liquid chromatography-mass spectrometry를 이용한 가열 조리된 어패류에서의 heterocyclic amines 함량 분석)

  • Lee, Jae-Hwan;Back, Yoo-Mi;Lee, Kwang-Geun;Shin, Han-Seung
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.3
    • /
    • pp.326-333
    • /
    • 2009
  • Heterocyclic aromatic amines (HCAs) are mutagenic and carcinogenic substances that are formed during the heating of protein-rich foods. HCAs are generally found at low amounts in a complex matrix, which requires sophisticated analysis. In this study, HCAs were extracted from lyophilized fish and shellfish samples using solid-phase extraction (SPE) and determined by liquid chromatography-electrospray ionization/mass spectrometry (LC-ESI-MS). The HCA recoveries in the fish and shellfish ranged from 15.7 to 74.7% with standard deviations from 0.2 to 7.63%. And HCA concentrations ranged from 0.8 to 1,117.7 $ng/g^{-1}$ in cooked food samples. 1-methyl-9H-pyrido[3,4-b]indole (Harman), 9H-pyrido[3,4-b]indole (Norharman), and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) were the most abundant HCAs formed in the muscle of fried mackerel, at levels of 1,117.7, 926.6, and 133.7 ng/g, respectively. 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), 2-aminodipiryrido[1,2-a:3,2-d]imidazole(Glu-P-2), 2-amino-9H-pyrido[2,3-b]indole(A${\alpha}$C), 2-amino-3methyl-9H-pyrido [1,2-a:3,2-d]imidazole(MeA${\alpha}$C), 2-amino-3,4,7,8-tetramethylimidazo[4,5-f]quinoxaline (TriMeIQx), 2-amino-3,7,8-trimethylimidazo [4,5-f]quinoxaline(7,8-DiMeIQx), and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) were only detected by small quantities ranged from 1.5 to 98.6 ng/g. Overall, this study provides useful information on HCA levels in fish and shellfish products consumed in Korea.

Establishment of an Analytical Method for Novobiocin in Livestock Products Using HPLC-UVD (HPLC-UVD를 이용한 축산식품 중 Novobiocin의 시험법 확립)

  • Park, Hee-Ra;Kwon, Chan-Hyeok;Lee, Jong-Goo;Kim, Hyung-Soo;Chae, Young-Sik;Oh, Jae-Ho;Kwon, Ki-Sung
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.263-268
    • /
    • 2012
  • Novobiocin is a coumarin-containing antibiotic, and has a longer half-life in various animals than other veterinary medicines. A simple and rapid high-performance liquid chromatography assay for the determination of residual novobiocin levels in chicken, beef and milk has been developed and validated. The separation condition for HPLC/UVD was optimized by a MG II $C_{18}$ (4.6 mm $ID{\times}250$ mm, 5 ${\mu}m$) column with 0.1% formic acid in $H_2O$/0.1% formic acid in Acetonitrile (40/60, v/v) as the mobile phase at a flow rate of 1.0 mL/min and the detection wavelength was set at 340 nm. Residues were extracted from tissue by blending with methanol. After liquid-liquid partitioning, lipid materials were removed with n-hexane and purification as Silica (1 g, 6 mL) cartridge with 10 mL acetone/dichloromethane (10/90, v/v). Limit of quantification and linearity performed by the analytical method were 0.02 mg/kg and 0.999 ($r^2$), and the recovery range was $88.8{\pm}5.6-100.3{\pm}4.4$, $88.8{\pm}7.2-97.0{\pm}3.2$ and $88.1{\pm}4.3-92.8{\pm}3.6%$. It is expected that this analytical method with regards to novobiocin in chicken, beef and milk could be applied as an official method to administer food safety on veterinary medicines.

Development and Validation of an Analytical Method for Quinoxyfen in Agricultural Products using QuEChERS and LC-MS/MS (QuEChERS법 및 LC-MS/MS를 이용한 농산물 중 살균제 Quinoxyfen의 잔류시험법 개발 및 검증)

  • Cho, Sung Min;Do, Jung-Ah;Lee, Han Sol;Park, Ji-Su;Shin, Hye-Sun;Jang, Dong Eun;Choi, Young-Nae;Jung, Yong-hyun;Lee, Kangbong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.2
    • /
    • pp.140-147
    • /
    • 2019
  • An analytical method was developed for the determination of quinoxyfen in agricultural products using the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The samples were extracted with 1% acetic acid in acetonitrile and water was removed by liquid-liquid partitioning with $MgSO_4$ (anhydrous magnesium sulfate) and sodium acetate. Dispersive solid-phase extraction (d-SPE) cleanup was carried out using $MgSO_4$, PSA (primary secondary amine), $C_{18}$ (octadecyl) and GCB (graphitized carbon black). The analytes were quantified and confirmed by using LC-MS/MS in positive mode with MRM (multiple reaction monitoring). The matrix-matched calibration curves were constructed using six levels ($0.001-0.25{\mu}g/mL$) and the coefficient of determination ($R^2$) was above 0.99. Recovery results at three concentrations (LOQ, 10 LOQ, and 50 LOQ, n=5) were in the range of 73.5-86.7% with RSDs (relative standard deviations) of less than 8.9%. For inter-laboratory validation, the average recovery was 77.2-95.4% and the CV (coefficient of variation) was below 14.5%. All results were consistent with the criteria ranges requested in the Codex guidelines (CAC/GL 40-1993, 2003) and Food Safety Evaluation Department guidelines (2016). The proposed analytical method was accurate, effective and sensitive for quinoxyfen determination in agricultural commodities. This study could be useful for the safe management of quinoxyfen residues in agricultural products.

Studies on the Lipid Components of Panax ginseng (인삼(人蔘)의 지방질(脂肪質) 성분(成分)에 관한 연구)

  • Shin, Hyo-Sun;Lee, Min-Woong
    • Korean Journal of Food Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.185-192
    • /
    • 1980
  • To study lipid components of Panax ginseng produced in Korea, the lipids of fresh ginsengs were extracted with the mixture of chloroform-methanol (2:1, v/v) and those of dried ginsengs were extracted with diethyl ether respectively. The lipid components extracted were separated and quantitated by column, thin layer and gas-liquid chromatographies. The results were summarized as follows : 1. Fresh ginseng contained 0.62% total lipid of which 45.28% were neutral lipids, 18.12% glycolipids, and 36.60% phospholipids. But dried ginseng contained 0.89% total lipids of which 86.48% were neutral lipids, 9.20% glycolipids, and 4.32% phospholipids. 2. Triglycerides (37.6 to 42.5% of the total neutral lipids) and sterol esters (16.5 to 19.6%) in all the fresh and dried ginseng were the major components among the neutral lipids. Monoglycerides, diglycerides, free fatty acids and free sterols were minor components. 3. Digalactosyl diglycerides (23.5% of the total glycolipids) in the fresh ginseng and steryl liglycosides (28.9%) in the dried ginseng were predominant components among the glycopids, respectively, Esterified steryl glycosides and monogalactosyl diglycerides were also identified, and four unknown spots in the fresh ginseng and two unknown spots in the dried ginseng were present. 4. Phosphatidyl cholines (31.3 to 31.9% of the total phospholipids) and phosphatidyl glycerols (34.8 to 36.7%) in all the fresh and dried ginseng were the major components among the phospholipids. Phosphatidyl inositols and phosphatidyl ethanolamines were also identified. 5. The major fatty acids in the fresh and dried ginseng were linoleic $(62.29{\sim}64.32%)$, palmitic $(13.16{\sim}15.63%)$, oleic $(5.73{sim}7.23%)$ and linolenic $(5.73{sim}7.23%)$. The fatty acid compositions in neutral lipid fraction was similar to the pattern in those of the total lipids. But glycolipid and phospholipid fractions contained a lower percent of linoleic acid and a higher percent of palmitic acid than the neutral lipid fraction.

  • PDF

Detection of Antifungal Endolichenic Fungi and Antifungal Compound (항진균성 지의류 내생 곰팡이 및 항진균성 물질의 탐색)

  • Cheon, Da-Mi;Jang, Da Som;Kim, Hye Young;Choi, Kap Seong;Choi, Sang Ki
    • Korean Journal of Microbiology
    • /
    • v.49 no.2
    • /
    • pp.165-171
    • /
    • 2013
  • To isolate a novel antifungal compound, we obtained 571 kinds of endolichenic fungi from Lichen Bioresources Center and examined their antifungal abilities. Four fungi Stereocaulon sp. (1429), Stereocaulon sp. (1430), Cryptosporiopsis sp. (0156), and Graphis sp. (1245) showed high antifungal activity against Candida albicans when they grew in both liquid and solid media. We extracted the culture supernatants of these fungi with chloroform and then ethyl acetate. The chloroform fraction exhibited the highest anti-fungal activities when those fractions were examined for the growth inhibition of Candida albicans with disc diffusion method. To see information for the inhibitor present in chloroform fraction we employed GC-MS for the fractions of Stereocaulon sp. (1429). We found that hexamethylcyclotrisiloxane, decanoic acid, hexadecanonic acid-methyl ester, 14-octadecenoic acid-methyl ester, and octadecenoic acid-methyl ester were present more in chloroform fraction than in ethylacetate fraction. This indicates that those compounds could be possible antifungal candidates since antifungal activity of chloroform extract was two times higher than that of ethyl acetate extract.