• Title/Summary/Keyword: extractant

Search Result 204, Processing Time 0.032 seconds

Removal Characteristics of Sr(II) by Solid-Phase Extractant Prepared by Immobilizing Di-(2-ethylhexyl)phosphoric acid (D2EHPA) and Tri-butyl-phosphate (TBP) in Polysulfone (Polysulfone에 Di-(2-ethylhexyl)phosphoric acid(D2EHPA)와 tri-butyl-phosphate(TBP)를 고정화하여 제조한 고체상 추출제에 의한 Sr(II)의 제거특성)

  • Kam, Sang-Kyu;Jeon, Jin-Woo;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.24 no.3
    • /
    • pp.267-274
    • /
    • 2015
  • The feasibility of PS-D2EHPA/TBP beads prepared by immobilizing two extractants D2EHPA and TBP in polysulfone to remove Sr(II) from aqueous solution was investigated in batch system. Batch experiments were carried out to study equilibrium isotherms, kinetics, and thermodynamics. Equilibrium data were fitted using Langmuir, Freundlich, Redlich-Peterson, and Dubinin-Radushkevich equation models at temperatures of 298 K, 313 K, and 328 K. The removal capacity of Sr(II) by PS-D2EHPA/TBP beads obtained from Langmuir model was 2.41 mg/g at 298 K. The experimental data were well represented by pseudo-second-order model. The removal process of Sr(II) by PS-D2EHPA/TBP beads prepared in this study was found to be feasible, endothermic, and spontaneous.

Preparation of PVC-D2EHPA beads by Immobilization of D2EHPA on Polyvinyl Chloride as Solid Phase Extractant and Removal Characteristics of Cu(II) (고체상 추출제로서 Polyvinyl Chloride에 D2EHPA를 고정화한 PVC-D2EHPA의 제조와 Cu(II) 제거 특성)

  • Kam, Sang-Kyu;You, Hae-Na;Lee, Dong-Hwan;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.23 no.6
    • /
    • pp.1157-1163
    • /
    • 2014
  • The solid phase extractant (PVC-D2EHPA bead) was prepared by immobilizing di-2-ethylhexyl-phosphoric acid (D2EHPA) with polyvinyl chloride (PVC). The prepared PVC-D2EHPA beads were characterized by using fourier transform infrared spectrometer (FTIR) and scanning electron microscopy (SEM). The removal experiments of Cu(II) by PVC-D2EHPA beads conducted batchwise. The removal kinetics of Cu(II) was found to follow the pseudo-second-order model. The equilibrium data fitted well with Langmuir isotherm model and the maximum removal capacity was 2.6 mg/g at $20^{\circ}C$. The optimum pH region was in the range of 3.5 to 6. and the standard free energy (${\Delta}G^{\circ}$) was between -4.67~-4.98 kJ/mol, indicating the spontaneous nature of Cu(II) removal by PVC-D2EHPA beads.

Precious Metals Extraction Processing in Chloride Media by Using Ionic Liquids as Novel Extractant Systems

  • Kumar, Jyothi Rajesh;Choi, In-Hyeok;Lee, Jin-Young
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.503-509
    • /
    • 2017
  • The present experimental study proposed two ionic liquids (ILs) namely [Aliquat 336] [$HSO_4$] (prepared and characterized at our laboratory) and Cyphos 101 IL (supplied by Cytec Company) dissolved in two different diluents such as DCM (di-chloro-methane) and toluene applied for PMs extraction. The first IL [Aliquat 336] [$HSO_4$] prepared and confirmed the formation of final product by using FT-IR and TGA studies. The primary experiment in solvent extraction processing is kinetic effect; 0 to 30 time varied for PMs by using two ILs and confirmed the optimized extraction equilibrium time. This study was conducted for PMs (Pt, Rh and Cu) extraction and separation from each other by using proposed ILs. This is the primary study of the utilizing green solvents such as ILs as an extractant system for Pt, Rh and Cu extraction and possible separation.

Solvent Extraction of Sn(IV) from Hydrochloric Acid Solution by Alamine 336 (염산용액에서 Alamine 336에 의한 주석(IV)의 용매추출)

  • Ahn, Jae-Woo;Seo, Jae-Seong;Lee, Man-Seung
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.10
    • /
    • pp.929-935
    • /
    • 2010
  • The solvent extraction behavior of Sn(IV) from hydrochloric acid was investigated using Alamine336 (Tri-n-cotylamine) as an extractant. The experimental parameters of the concentration of the HCl solution, chloride ions, extractant, and Sn(IV) were assessed. The results showed that the extraction percentage of Sn(IV) was more than 95% in our experimental range and was only slightly affected by the HCl concentration. The extraction reaction of Sn(IV) by Alamine 336 from the chloride solution was identified as follows: $SnCl_6{^{2-}}+2R_3NHCl_{(org)}=(R_3NH)_2SnCl_{6(org)}+2Cl^-$ and $K=6.3{\times}10^4$. Stripping experiments of Sn(IV) from the loaded organic phase were done by using several stripping agents. A stripping percentage of 90% was obtained with a 2.0 M NaOH solution.

Solvent Extraction of the Thorium from Monazite Leaching Solution by Primene-JM-T (모나자이트 침출액으로부터 Primene-JM-T를 이용한 토륨의 용매추출)

  • Jeon, Jong-Hyuk;Kim, Hong-In;Lee, Jin-Young;Jyothi, Rajesh Kumar
    • Resources Recycling
    • /
    • v.30 no.5
    • /
    • pp.32-37
    • /
    • 2021
  • Thorium extraction and possible separation from monazite leaching solution was studied. Primary amine Primene JM-T was select ed for t horium ext ract ion processing. Various experiment s were t est ed and est ablished for t he t horium liquid -liquid extraction process. The screening of extractant, lower pH conditions, extractant variation and extraction isotherms construction, and finally, stripping studies were established.

Development of Extracting Solution for Soil Chemical Analysis Suitable to Integrated Ion-selective Micro-electrodes (집적형 이온선택성 미세전극 센서에 적합한 토양화학 분석용 침출액 종 개발)

  • Shin, Kook-Sik;Lim, Woo-Jin;Lee, Sang Eun;Lee, Jae Seon;Cha, Geun Sig
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.6
    • /
    • pp.513-521
    • /
    • 2009
  • The primary goal of this research was to develop an optimized analytical procedure for soil analysis based on ion-selective microelectrodes for agricultural purposes, which can perform on-site measurement of various ions in soil easily and rapidly. For the simple and rapid on-site diagnosis, an analysis of soil chemicals was performed employing a multicomponent-in-situ-extractant and an evaluation of ionselective microelectrodes were conducted through the regressive correlation method with a standard analytical approach widely employed in this area. Examination of sensor responses between various soil nutrient extractants revealed that 0.01M HCl and 1M LiCl provided the most ideal Nernstian response. However, 1M LiCl deteriorated the selective response for analytes due to high concentration (1M) of lithium cation. Thus, employing either 0.1M HCl as an extractant followed by 10 times dilution, or 0.01M HCl as an extractant without further dilution was chosen as the optimal extractant composition. A study of regressive correlation between results from ion-selective microelectrodes and those from the standard analytical procedure showed that analyses of $K^+$, $Na^+$, $Ca^{2+}$, and $NO_3{^-}$ showed the excellent consistency between two methods. However, the response for $NH_4{^+}$ suffered the severe interference from $K^+$. In addition, the selectivity for $Mg^{2+}$ over $Ca^{2+}$ was not sufficient enough since available ionophores developed so far do not provide such a high selectivity for $Mg^{2+}$. Therefore, as an agricultural on-site diagnostic instrument, the device in development requires further research on $NH_4{^+}$ analysis in the soil sample, development of $Mg^{2+}$-selective ionophore, and more detailed study focused on potassium, one of the most important plant nutrients.

Measurement of Exchangeable Cations in Salt Accumulated Vinyl Greenhouse Soils (염류집적 비닐하우스 토양의 교환성 양이온 측정)

  • Chung, Jong-Bae;Lee, Yong-Se;Jeong, Byeong-Ryong
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.1
    • /
    • pp.21-27
    • /
    • 2018
  • BACKGROUND: Although 1 M $NH_4OAc$ (pH 7.0) is predominantly used as the extractant of exchangeable cations in agricultural soils, this method is unsuitable for extracting the cations in saline and calcareous soils. This study was performed to select a proper method to determine exchangeable cations in vinyl greenhouse soils. METHODS AND RESULTS: Exchangeable cations (Ca, Mg, K, Na) in saline vinyl greenhouse soils were determined after extraction with 1 M $NH_4OAc$ (pH 7.0 and 8.5) and 1 M alcoholic $NH_4Cl$ (pH 8.5). Sum of exchangeable cations of the soils extracted with 1 M $NH_4OAc$ at pH 7.0 was 1.9-2.5 times greater than soil cation exchange capaity determined at pH 7.0, even though soluble salts were pre-removed. A similar result was found when the cations were extracted with 1 M $NH_4OAc$ at pH 8.5. Those results are mostly due to the overestimation of exchangeable Ca and Mg, linked to a partial dissolution of sparingly soluble salts in $NH_4OAc$ solution. When extracted with 1 M alcoholic $NH_4Cl$ at pH 8.5, extractable Ca and Mg decreased significantly due to the lower solubility of Ca and Mg carbonates in the extractant. And the sum of exchangeable cations was very close to the corresponding exchange capacity of soils. CONCLUSION: Alcoholic $NH_4Cl$ (pH 8.5) is proposed as a reliable extractant in determination of exchangeable cations in saline vinyl greenhouse soils. And soluble salts should be removed prior to the extraction of exchangeable cations.

Solvent Extraction of Rare Earth Elements (La, Ce, Pr, Nd, Sm) from Hydrochloric Acid Solutions using Cyanex 572 (염산용액에서 Cyanex 572에 의한 희토류 원소(La, Ce, Pr, Nd, Sm)의 용매추출)

  • Cho, Yeon-Chul;Kang, Myeong-Sik;Ahn, Jae-Woo;Lee, Jin-Young
    • Resources Recycling
    • /
    • v.25 no.6
    • /
    • pp.50-57
    • /
    • 2016
  • This work was examined the extraction and stripping behavior of rare earths (La, Ce, Pr, Nd, Sm) from the hydrochloric acid solution by Cyanex 572 and compared to the results that of PC88A. Experimental parameters such as equilibrium pH, extractant & strip reagent concentration were observed and extraction percentage, distribution coefficient, stripping percentage and the separation factor of the adjacent element were analyzed. The $pH_{50}$ values was more higher using Cyanex 572 than that of PC88A. As the increase of the extractant concentration, the distribution coefficient of rare earth elements was increased. Stripping percentage of rare earth elementss from the Cyanex 572 was 85% to 95% and PC88A showed 80% to 87%. Separation factor of Ce/La, Ce/Pr, Pr/Nd, Nd/Sm was enhanced about 1.0-5.0 using Cyanex 572 as an extractant in mixture solution.

Extraction of Docosahexaenoic Acid (DHA) from Lyophilized Thraustochitrium sp.

  • CHO, JOONG-HOON;GWI-SUK HEO;JI-WON YANG
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.5
    • /
    • pp.358-360
    • /
    • 1996
  • Solvent extraction, soxhlet method, and supercritical fluid extracion were considered, respectively, as the method of choice for the recovery of DHA from lyophilized Thraustochitrium sp., and the results of corresponding extraction were compared. Supercritical fluid extraction seems to be the most appropriate process with respect to time, process simplicity, and extractant intoxicity.

  • PDF

Introduction of Modifying Solvents to Carbon Dioxide in Supercritical Extractions

  • 이정미정;David J. Chesney
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.12
    • /
    • pp.1351-1355
    • /
    • 1998
  • A simple apparatus for adding a modifying solvent to supercritical CO2 extractant was described. Small, fixed volumes (typically 100 μL) of liquid modifying solvents were delivered during the extraction process by use of an in-line high pressure loop injector and an air pump. Without disconnecting the extraction cell from the supercritical fluid extraction system, the modifying solvent was repeatedly delivered. The solvent modification device was optimized during the extraction of carbaryl and bis(acetylacetonato) copper(Ⅱ). Extraction recoveries from spiked filter paper and soil samples ranged between 22% and 109%, depending on the analyte and matrix components. The addition of polar modifying solvents were necessary to improve the extractability of the nonpolar CO2.