• Title/Summary/Keyword: extracellular wall polysaccharides

Search Result 5, Processing Time 0.02 seconds

STUDIES ON THE EXTRACELLULAR POLYSACCHARIDES PRODUCED BY ISOLATED DENTAL PLAQUE STREPTOCOCCI (Dental Plaque Streptococci가 생산하는 세포외 다당류에 관한 연구)

  • Chung, Tai-Young
    • The Journal of the Korean dental association
    • /
    • v.9 no.12
    • /
    • pp.819-822
    • /
    • 1971
  • For this investigation, author isolated Streptococcus mitis strain SD-9 from the bacterial flora in the human dental plaque, which was incubated in brain-heart infusion media containing 5% sucrose at 37℃ for 24 hours. For the cytochemical demonstration of polysaccharide produced by this strain, a modified thiosemicarbazide osmium method (Critchley et al., 1967) was used. After fixation with this reagent, the harvested cells was suspended in 1% agar for the higher concentration of cells(Kellenberger et al., 1964). And they were dehydrated in the various concentration of ethanol, and embedded in Epon 812(Luft, 1961). Sectioning was done with the Sorvall MT-2 Porter Blum ultramicrotome by means of a glass knife, and the sections were stained with saturated uranyl acetate and lead citrate (Raynolds, 1963). All preparations were examined in a electron microscope, Hitachi HU-ll E-1 type. The morphological features of extracellular polysaccharide produced by Streptococcus mitis strain SD-9 were appeared in 3 structurally different forms, those are, electron dense fibrillar material linearly arranged adjacent to the outer surface of cell wall, highly electron dense globular material adjacent to the outer surface of cell wall, and strutureless fluffy meshwork of possible very fine filament.

  • PDF

The Relationship between the Cell Wall Components of Lactococcus lactis subsp.cremoris ATCC 11602-A1 and Its Bacteriophage Resistance (Lactococcus lactis subsp. cremoris ATCC 11602-A1의 세포벽 구성분과 Phage 내성과의 관련성에 관한 연구)

  • 이춘화;배인휴;강국희
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.3
    • /
    • pp.240-245
    • /
    • 1994
  • Relation the phage defense mechanism of phage resistant Lactococcus lactis subsp. cremoris ATCC 11602-A1 to its cell wall components was investigated. To determine whether teichoic acid which is known to be one of the phage receptor site present on the cell wall, phage adsorption was examined after treatment 5% TCA(60%$\CIRC $C) and concanavalin A to the cell wall of A1 and parent strain. However, the adsorption rate of two strains did not change. Total amount of phosphate after TCA treatment did not change in both strains, but a difference between the two strains was observed. Ribitol and glycerol, components of teichoic acid, could not be detected in the cell walls of two strains by GC analysis. These results suggest that although teichoic acid was not present in the cell walls of both strains, the composition of cell wall of two strains was not identical. Measurement of amount of protein and SDS-polyacryamide gel electrophoresis were carried out to examine the involvement of cell wall protein in phage resistance, showing that protein is nothing to do with phage adsorption of parent strain, but phage resistance of A1 is related to protein. Cell wall carbohydrates of A1 contained rhamnose, glucose, and galactose. Total amount of carbohydrate of 1% SDS-treated A1 cell wall was reduced to the level of parent strain. The results suggest that phage resistance of A1 was due to the presence of a higher level of carbohydrates then parent strain, and to interaction of carbohydrate and protein.

  • PDF

Structures and functions of microbial extracellular or wall polysaccharides in the physiology of producer organisms (미생물 다당류의 구조와 세포생리학적 기능)

  • 박용일
    • The Microorganisms and Industry
    • /
    • v.26 no.1
    • /
    • pp.18-30
    • /
    • 2000
  • Three kinds of organic matter such as glucose, oxalic acid, and ethanol were added to the media(N-free or NO$\_$3/-riched) and their effects on the nitrogen fixation of Nostoc pruniforme were measured by manometric technique through the experiments in vivo. 1) The organic matters used in this experiments showed effective results as a role of substrate for the fixation of atmospheric nitrogen. 2) In the nitrogen-free medium treated with the both of flucose nad ethanol, the highest nitrogen uptakes were detected in the treated of low concentrations (glucose ; 0.1%, 0.5%, ethanol : 0.1%, 0.5%). On the contrary, the highest nitrogen uptakes in NO$\_$3/-riched medium were measured at the treated of high concentrations (glucose ; 2%, 1%, ethanol ; 1.5%, 1.0%). 3) The highest nitrogen uptakes in N-free medium treated with oxalic acid were measured at the concentration of 2% and 1%, respectively. In the medium of NO$\_$3/-riched, the nitrogen uptakes were in the opposite directions.

  • PDF

Exopolysaccharide-Overproducing Lactobacillus paracasei KB28 Induces Cytokines in Mouse Peritoneal Macrophages via Modulation of NF-${\kappa}B$ and MAPKs

  • Kang, Hee;Choi, Hye-Sun;Kim, Ji-Eun;Han, Nam-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.11
    • /
    • pp.1174-1178
    • /
    • 2011
  • Exopolysaccharides (EPSs) are microbial polysaccharides that are released outside of the bacterial cell wall. There have been few studies on EPS-producing lactic acid bacteria that can enhance macrophage activity and the underlying signaling mechanism for cytokine expression. In the current study, EPS-overproducing Lactobacillus (L.) paracasei KB28 was isolated from kimchi and cultivated in conditioned media containing glucose, sucrose, and lactose. The whole bacterial cells were obtained with their EPS being attached, and the cytokine-inducing activities of these cells were investigated. Gas chromatography analysis showed the presence of glucose, galactose, mannose, xylose, arabinose, and rhamnose in EPS composition. EPS-producing L. paracasei KB28 induced the expression of tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-6, and IL-12 in mouse macrophages. This strain also caused the degradation of $I{\kappa}B{\alpha}$ and phosphorylation of the major MAPKs: Jun N-terminal kinase (JNK), p38, and extracellular signal-regulated kinase (ERK)1/2. The use of pharmacological inhibitors showed that different signaling pathways were involved in the induction of TNF-${\alpha}$, IL-6 and IL-12 by L. paracasei KB28. Our results provide information for a better understanding of the molecular mechanisms of the immunomodulatory effect of food-derived EPS-producing lactic acid bacteria.

Production of Nitric Oxide in Raw 264.7 Macrophages treated with Ganoderan, the ${\beta}-Glucan$ of Ganoderma lucidum (영지의 균사체성 ${\beta}-glucan$에 의한 Raw 264.7 대식세포의 Nitric Oxide생성)

  • Han, Man-Deuk;Lee, Eun-Sook;Kim, Young-Kweon;Lee, June-Woo;Jeong, Hoon;Yoon, Kyung-Ha
    • The Korean Journal of Mycology
    • /
    • v.26 no.2 s.85
    • /
    • pp.246-255
    • /
    • 1998
  • Ganoderan (GAN), an immunomodulating ${\beta}-glucan$ of G. lucidum, induces potent antitumor immunity in tumor-bearing mice. This study was set up to elucidate the ability of macrophage activation of GANs. GAN-treated Raw 264.7 macrophages showed enhanced production of nitric oxide (NO). The ability of GANs to produce NO was based on differences in chemical composition of GANs obtained from the mycelium on various carbon sources and mycelial fractionation. The highest NO production was observed in CW-AS-WS polysaccharide which was extracted from the mycelial wall. GAN-treated Raw 264.7 cells gave a 2-to 5-fold (24 hr) formation of NO levels compared with those treated with medium only. Partial removal of the protein in the extracellular GAN by TCA treatment did appreciably reduce its capacity to secrete NO. The mixture effect of GAN and LPS increased the nitric oxide secretion from RAW 264.7. The cell proliferation of GAN-treated Raw 264.7 cell tines inhibited as compared with its control. Of the culture supernatant of macrophage activated by GAN, the percentage of cytotoxicity against mouse leukemia L1210 cells was slightly dependent on the amount of NO in the culture supernatants of the activated-macrophages. These results indicate that the ${\beta}-glucan-related$ polysaccharides of the higher fungus activate macrophage and release nitric oxide. It also suggests that murine macrophages possess certain receptors for ${\beta}-anomeric$ glucans and play a critical role of ${\beta}-glucan-related$ tumor killing mechanism.

  • PDF