• Title/Summary/Keyword: extracellular polysaccharides

Search Result 53, Processing Time 0.02 seconds

Behavior and Influence of EPS on Membrane Fouling by Changing of HRT in MBR with Gravitational Filtration (중력여과 방식의 MBR을 이용한 하수처리에서 HRT 변화에 따른 EPS의 거동과 막오염에 대한 영향)

  • Kim, SI-Won;Kwak, Sung-Jin;Lee, Eui-Sin;Hong, Seung-Mo;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.865-870
    • /
    • 2006
  • The behavior and influence of EPS on membrane fouling by changing of hydraulic retention time was investigated, using lab. scale submerged membrane bio-reactor, which was operated with gravitational filtration and fed supernatant of primary sedimentation in waste water treatment plant as influent. The membrane was adopted micro-filter of polyethylene hollow fiber. EPS was analysed as polysaccharides and protein especially, into soluble and bound EPS separately. The concentration of soluble EPS was increased at short HRT, then membrane fouling was rapidly progressed and flux was depressed. The most of EPS clogged membrane pore were polysaccharides, while protein was important parameter affected on membrane fouling because of it's more accumulating in the more term operating.

Antagonism of Bacterial Extracellular Metabolites to Freshwater-Fouling Invertebrate Zebra Mussels, Dreissena polymopha

  • Gu, Ji-Dong;Ralph Mitchell
    • Journal of Microbiology
    • /
    • v.39 no.2
    • /
    • pp.133-138
    • /
    • 2001
  • We investigated the antagonism of indigenous bacteria isolated from stressed mussels and their extracellular metabolites on the adult zebra mussel, Dreissena polymorpha. Selective bacterial isolates including Aeromonas media, A. salmonicida, A. veronii, and Shewanella putrefaciens, showed strong lethality against adult mussels and 100% mortality was observed within 5 days of incubation. Bacterial metabolites, fractionated and concentrated from stationary-phase culture supernatants of these bacterial isolates, displayed varying degrees of antagonistic effects on zebra mussels. Among the three size fractions examined, <5, 5-10, and >10 kDa, the mast lethal fraction seems to be >10 kDa for three of the four isolates tested. Further chemical analyses of these size fractions revealed that the predominant constituents were polysaccharides and proteins. No 2-keto-3-deoxyoctanoic acid (2-KDO), deoxyribonucleic acids (DNA) or uranic acid were detectable. Extraction of supernatants of two antagonistic isolates with polar solvent suggested that polar molecules are present in the active fraction. Our data suggest that extracellular metabolites produced by antagonistic bacteria are also involved in disease development in zebra mussels and elucidation of the mechanisms involved may offer a novel strategy for control of biofouling invertebrates.

  • PDF

FUNGAL EXTRACELLULAR POLYSACCHARIDES INVOLVED IN RECYCLING OF METABOLITES AND OSMOTOLERANCE OF PENICILLIUM FELLUTANUM : APPLICATION OF $^{13}$ C-NMR SPECTROSCOPY FOR THE STUDY ON FUNGAL PHYSIOLOGY AND METABOLISM

  • Park, Yong-Il;Gander, John.-E.
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2000.04a
    • /
    • pp.208-213
    • /
    • 2000
  • Penicillium fellutanum produces a phosphorylated, choline-containing extracellular peptido-polysaccharide, peptidophosphogalactomannan (pPxGM) (8). The $\^$13/C-methyl labeled pPxGM ([methyl-$\^$13/C]pPxGM) was prepared from the cultures supplemented with L-[methyl-$\^$13/C]methionine or [2-$\^$13/C]glycine and was used as a probe to monitor the fate of phosphocholine in this polymer. Addition of purified [methyl-$\^$l3/C]pPxGM to growing cultures in low phosphate medium resulted in the disappearance of [methyl-$\^$13/C]phosphocholine and -N,N'-dimethyl-phosphoethanolamine from the added [methyl-$\^$13/C]pPxGM. Two $\^$l3/C-methyl-enriched cytoplasmic solutes, choline-O-sulfate and glycine betaine, were found in mycelial extracts, suggesting that phosphocholine-containing extracellular pPxGM of P.fellutanum is a precursor of intracellular choline-O-sulfate and glycine betaine and thus of phosphatydilcholine (l0). $\^$13/C-Methyl-labeled cells grown in 3 M NaCl-containing medium showed 2.6- and 22-fold more accumulation of $\^$13/C-methyl labeled choline-O-sulfate and glycine betaine, respectively, originated from the extracellular [$\^$13/C-methyl]pPxGM than those grown without added NaCl. The results suggest that, in addition to glycerol and erythritol, glycine betaine and choline-O-sulfate and thus choline are also osmoprotectants and hence that pPxGM is involved in osmotolerance of this fungus (11). Taken collectively, the $\^$l3/C- and $\^$31/P-NMR analyses of cytosolic solute pools and structural modulation of extracellular pPxGM corresponding to environmental stimuli in P. fellutanum, provided evidence that pPxGM is involved in cellular choline metabolism, osmotolerance, and recycling of metabolites.

  • PDF

Differential Expression of Kidney Proteins in Streptozotocin-induced Diabetic Rats in Response to Hypoglycemic Fungal Polysaccharides

  • Hwang, Hye-Jin;Baek, Yu-Mi;Kim, Sang-Woo;Kumar, G. Suresh;Cho, Eun-Jae;Oh, Jung-Young;Yun, Jong-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.12
    • /
    • pp.2005-2017
    • /
    • 2007
  • Diabetic nephropathy remains a major cause of morbidity and mortality in the diabetic population and is the leading cause of end-stage renal failure. Despite current therapeutics including intensified glycemic control and blood pressure lowering agents, renal disease continues to progress relentlessly in diabetic patients, albeit at a lower rate. Since synthetic drugs for diabetes are known to have side effects, fungal mushrooms as a natural product come into preventing the development of diabetes. Our previous report showed the hypoglycemic effect of extracellular fungal polysaccharides (EPS) in streptozotocin (STZ)-induced diabetic rats. In this study, we analyzed the differential expression patterns of rat kidney proteins from normal, STZ-induced diabetic, and EPS-treated diabetic rats, to discover diabetes-associated proteins in rat kidney. The results of proteomic analysis revealed that up to 500 protein spots were visualized, of which 291 spots were differentially expressed in the three experimental groups. Eventually, 51 spots were statistically significant and were identified by peptide mass fingerprinting. Among the differentially expressed renal proteins, 10 were increased and 16 were decreased significantly in diabetic rat kidney. The levels of different proteins, altered after diabetes induction, were returned to approximately those of the healthy rats by EPS treatment. A histopathological examination showed that EPS administration restored the impaired kidney to almost normal architecture. The study of protein expression in the normal and diabetic kidney tissues enabled us to find several diabetic nephropathy-specific proteins, such as phospholipids scramblase 3 and tropomyosin 3, which have not been mentioned yet in connection with diabetes.

Heavy Metal Adsorption Characteristics of Extracellular Polysaccharide Produced by Zoogloea ramigera Grown on Various Carbon Sources

  • Kim, Se-Kyung;Lee, Choul-Gyun;Yun, Hyun-Shik
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.5
    • /
    • pp.745-750
    • /
    • 2003
  • Zoogloea ramigera produces an extracellular polysaccharide called zooglan, which adsorbs heavy metals. In the current study, Zoogloea ramigera was cultured in media containing various carbon sources. When different carbon sources were included in the cultivation medium, there was a change in the composition of zooglan that is mainly composed of glucose, galactose, and pyruvic acid. The various zooglan compositions were analyzed by HPLC, and changes in the heavy metal (lead (II) and cadmium) adsorption characteristics relative to a change in the composition were examined using an atomic absorption spectrophotometer. A high adsorption capacity was observed at a pH higher than 3.0. The adsorption of metal ions was the highest at $35^{\circ}C$, and a higher adsorption was obtained with a lower flow rate. Changes in the zooglan composition did result in changes in the heavy metal adsorption characteristics. Furthermore, it was also found that the pyruvic acid content was more important than the glucose or galactose content for heavy metal adsorption.

Insight into influence of iron addition in membrane bioreactor on gel layer fouling

  • Zhang, Haifeng;Lu, Xin;Yu, Haihuan;Song, Lianfa
    • Membrane and Water Treatment
    • /
    • v.8 no.6
    • /
    • pp.543-551
    • /
    • 2017
  • Membrane fouling in membrane bioreactor (MBR) remains a primary challenge for its wider application. The focus of this study to investigate the influence of iron distribution in activated sludge on gel layer fouling in MBR. Significant reduction in the transmembrane pressure (TMP) rise rates was observed in the presence of iron as result of retarding the gel layer formation time. The spatial distribution of iron had a significant impact on the stratification structure of extracellular polymeric substances (EPS) fractions, such as proteins (PN) and polysaccharides (PS). A mitigation of PN or PS from the supernatant to the EPS inner layers was observed in the presence of iron. Compared with the control reactor, the reduction in PN and PS of the supernatant and lower PN/PS rates of the LB-EPS were beneficial to decrease the membrane fouling potential during the gel layer formation. Consequently, the iron addition managed to control gel layer fouling could be a useful strategy in MBR.

Isolation and Characterization of a Novel Exopolysaccharide-Producing Paenibacillus sp. WN9 KCTC 8951P

  • Seo, Weon-Taek;Kahng, Goon-Gjung;Nam, Sang-Hae;Choi, Sang-Do;Suh, Hyun-Hyo;Kim, Seon-Won;Park, Yong-Ha
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.820-825
    • /
    • 1999
  • A bacterial strain WN9, which produced a new type of extracellular polysaccharide, was isolated from soil samples. By morphological, physiological, biochemical, and phylogenetic studies, strain WN9 was identified as a Paenibacillus sp. and it was named as Paenibacillus sp. WN9, which produced a high molecular extracellular polysaccharide from glucose. The molecular weight of the exopolysaccharide (EPS-WN9) was estimated to be about 31.5 mega-Da. The FT-IR spectrum of EPS-WN9 revealed typical characteristics of polysaccharides. EPS- WN9 consisted of D-glucose and D-mannose with a molar ratio of 1:1.4 being identified as a neutral sugar component. The acidic component of EPS- WN9 was tyrosine. Rheological analysis of EPS- WN9 revealed that the pseudoplastic property and its apparent viscosity remained stable at various temperatures and pHs.

  • PDF

참당귀(Angelica gigas Nakai) 현탁세포 perfusion 배양 연구

  • Kim, Yeong-Hwa;Lee, Yong-Il;Kim, Ik-Hwan;Kim, Dong-Il
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.301-304
    • /
    • 2002
  • Perfusion culture strategies for high density culture of plant cell suspensions to enhance the productivity of extracellular polysaccharides were investigated. Angelica gigas Nakai cell suspensions were used to produce the extracellular polysaccharide and perfusion parameters were optimized to maximize the production. When the medium exchange was started at the fifth day after inoculation, the maximum cell concentration (23.8 g dry cell weight per liter) was achieved.

  • PDF

STUDIES ON THE EXTRACELLULAR POLYSACCHARIDES PRODUCED BY ISOLATED DENTAL PLAQUE STREPTOCOCCI (Dental Plaque Streptococci가 생산하는 세포외 다당류에 관한 연구)

  • Chung, Tai-Young
    • The Journal of the Korean dental association
    • /
    • v.9 no.12
    • /
    • pp.819-822
    • /
    • 1971
  • For this investigation, author isolated Streptococcus mitis strain SD-9 from the bacterial flora in the human dental plaque, which was incubated in brain-heart infusion media containing 5% sucrose at 37℃ for 24 hours. For the cytochemical demonstration of polysaccharide produced by this strain, a modified thiosemicarbazide osmium method (Critchley et al., 1967) was used. After fixation with this reagent, the harvested cells was suspended in 1% agar for the higher concentration of cells(Kellenberger et al., 1964). And they were dehydrated in the various concentration of ethanol, and embedded in Epon 812(Luft, 1961). Sectioning was done with the Sorvall MT-2 Porter Blum ultramicrotome by means of a glass knife, and the sections were stained with saturated uranyl acetate and lead citrate (Raynolds, 1963). All preparations were examined in a electron microscope, Hitachi HU-ll E-1 type. The morphological features of extracellular polysaccharide produced by Streptococcus mitis strain SD-9 were appeared in 3 structurally different forms, those are, electron dense fibrillar material linearly arranged adjacent to the outer surface of cell wall, highly electron dense globular material adjacent to the outer surface of cell wall, and strutureless fluffy meshwork of possible very fine filament.

  • PDF

Effects on the Stability of Aerobic Granular Sludge (AGS) at Different Carbon/Nitrogen Ratio (C/N비 변화가 호기성 그래뉼 슬러지의 안정성에 미치는 영향)

  • Kim, Hyun-Gu;Ahn, Dae-Hee
    • Journal of Environmental Science International
    • /
    • v.28 no.9
    • /
    • pp.719-727
    • /
    • 2019
  • In this study, the effect on the stability of Aerobic Granular Sludge (AGS) with different Carbon/Nitrogen (C/N) ratios was investigated. The C/N ratios were controlled to 10.0, 7.5, 5.0, and 2.5 using the sequencing batch reactor, and the results showed that the removal efficiency of organic matter and total nitrogen decreased simultaneously with the decrease of C/N ratio. The removal efficiency of organic matter and total nitrogen at C/N ratio of 2.5 was 70.7% and 52.3% respectively. In addition, the AGS/mixed liquor suspended solids (MLSS) ratio showed a tendency to decrease from 85.7% to 73.7%, while the sludge volume index showed a tendency to increase from 82 mL/g to 102 mL/g as the C/N ratio decreased. At the same time, the apparent deviation of polysaccharide (PS) content in extracellular polymeric substances was observed, and polysaccharides/protein (PS/PN) ratio decreased from 0.62 to 0.31 as the C/N ratio decreased. Optical microscope observations showed that the reduction in C/N ratio caused the growth of filamentous bacteria and significantly affected the stability of AGS.