• Title/Summary/Keyword: externally bonded steel plates

Search Result 16, Processing Time 0.017 seconds

Repair, retrofitting and rehabilitation techniques for strengthening of reinforced concrete beams - A review

  • Ganesh, P.;Murthy, A. Ramachandra
    • Advances in concrete construction
    • /
    • v.8 no.2
    • /
    • pp.101-117
    • /
    • 2019
  • Structural strengthening of reinforced concrete (RC) beams is becoming essential to meet the up-gradation of existing structures due to the infrastructure development. Strengthening is also essential for damaged structural element due to the adverse environmental condition and other distressing factors. This article reviews the state of the field on repair, retrofitting and rehabilitation techniques for the strengthening of RC beams. Strengthening of RC beams using various promising techniques such as externally bonded steel plates, concrete jacketing, fibre reinforced laminates or sheets, external prestressing/external bar reinforcement technique and ultra-high performance concrete overlay have been extensively investigated for the past four decades. The primary objective of this article is to discuss investigations on various strengthening techniques over the years. Various parameters that have been discussed include the flexural capacity, shear strength, failure modes of various strengthening techniques and advances in techniques over the years. Firstly, background information on strengthening, including repair, retrofitting, and rehabilitation of RC beams is provided. Secondly, the existing strengthening techniques for reinforced concrete beams are discussed. Finally, the relative comparisons and limitations in the existing techniques are presented.

Non-linear analysis of side-plated RC beams considering longitudinal and transversal interlayer slips

  • Kolsek, Jerneja;Hozjan, Tomaz;Kroflic, Ales;Saje, Miran;Planinc, Igor
    • Steel and Composite Structures
    • /
    • v.16 no.6
    • /
    • pp.559-576
    • /
    • 2014
  • A new mathematical model and its finite element formulation for the non-linear stress-strain analysis of a planar beam strengthened with plates bolted or adhesively bonded to its lateral sides is presented. The connection between the layers is considered to be flexible in both the longitudinal and the transversal direction. The following assumptions are also adopted in the model: for each layer (i.e., the beam and the side plates) the geometrically linear and materially non-linear Bernoulli's beam theory is assumed, all of the layers are made of different homogeneous non-linear materials, the debonding of the beam from the side-plates due to, for example, a local buckling of the side plate, is prevented. The suitability of the theory is verified by the comparison of the present numerical results with experimental and numerical results from literature. The mechanical response arising from the theoretical model and its numerical formulation has been found realistic and the numerical model has been proven to be reliable and computationally effective. Finally, the present formulation is employed in the analysis of the effects of two different realizations of strengthening of a characteristic simply supported flexural beam (plates on the sides of the beam versus the tension-face plates). The analysis reveals that side plates efficiently enhance the bearing capacity of the flexural beam and can, in some cases, outperform the tensile-face plates in a lower loss of ductility, especially, if the connection between the beam and the side plates is sufficiently stiff.

Tests and Design Provisions for Reinforced-Concrete Beams Strengthened in Shear Using FRP Sheets and Strips

  • Mofidi, Amir;Chaallal, Omar
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.2
    • /
    • pp.117-128
    • /
    • 2014
  • Numerous investigations of RC beams strengthened in shear with externally-bonded (EB) fibre-reinforced polymer (FRP) sheets, plates and strips have been successfully conducted in recent years. These valuable studies have highlighted a number of influencing parameters that are not captured by the design guidelines. The objective of this study was: (1) to highlight experimentally and analytically the influential parameters on the shear contribution of FRP to RC beams strengthened in shear using EB FRP sheets and strips; and (2) to develop a set of transparent, coherent, and evolutionary design equations to calculate the shear resistance of RC beams strengthened in shear. In the experimental part of this study, 12 tests were performed on 4,520-mm-long T-beams. The specimens were strengthened in shear using carbon FRP (CFRP) strips and sheets. The test variables were: (1) the presence or absence of internal transverse-steel reinforcement; (2) use of FRP sheets versus FRP strips; and (3) the axial rigidity of the EB FRP reinforcement. In the analytical part of this study, new design equations were proposed to consider the effect of transverse-steel in addition to other influential parameters on the shear contribution of FRP. The accuracy of the proposed equations has been verified in this study by predicting the FRP shear contribution of experimentally tested RC beams.

The Prediction of Debonding Strength on the Reinforced Concrete Beams Strengthened with fiber Reinforced Polymer (섬유복합체로 휨보강된 RC보의 박리하중 예측에 관한 연구)

  • Hong Geon-Ho;Shin Yeong-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.903-910
    • /
    • 2005
  • In recent years, fiber reinforced polymer(FRP) plates have shown a great promise as an alternative to steel plates for reinforced concrete beam rehabilitation. Reinforced concrete beams strengthened with externally bonded FRP sheets to the tension face can exhibit ultimate flexural strengths several times greater than their original strength if their bond strength is enough. Debonding failure, however, may occur before the strengthened beam can achieve its enhanced flexural strength. The purpose of this paper is to investigate the debonding failure strength of FRP-strengthened reinforced concrete beams. An analytical procedure for calculating debonding load between concrete and strengthening FRP is presented. Based on the local bond stress-slip relationship in the previous studies, uniform bond stress is assumed on the effective bond length. The analytical expressions are developed from linear elastic theory and statistical analyses of experimantal results reported in the literature. The proposed method is verified by comparisons with experimental results reported in the previous researches.

Nonlinear analysis of reinforced concrete beams strengthened with polymer composites

  • Pendhari, S.S.;Kant, T.;Desai, Y.M.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.1
    • /
    • pp.1-18
    • /
    • 2006
  • Strengthening of existing old structures has traditionally been accomplished by using conventional materials and techniques, viz., externally bonded steel plates, steel or concrete jackets, etc. Alternatively, fibre reinforced polymer composite (FRPC) products started being used to overcome problems associated with conventional materials in the mid 1950s because of their favourable engineering properties. Effectiveness of FRPC materials has been demonstrated through extensive experimental research throughout the world in the last two decades. However there is a need to use refined analytical tools to simulate response of strengthened system. In this paper, an attempt has been made to develop a numerical model of strengthened reinforced concrete (RC) beams with FRPC laminates. Material models for RC beams strengthened with FRPC laminates are described and verified through a nonlinear finite element (FE) commercial code, with the help of available experimental data. Three dimensional (3D) FE analysis has been performed by assuming perfect bonding between concrete and FRPC laminate. A parametric study has also been performed to examine effects of various parameters like fibre type, stirrup's spacing, etc. on the strengthening system. Through numerical simulation, it has been shown that it is possible to predict accurately the flexural response of RC beams strengthened with FRPC laminates by selecting an appropriate material constitutive model. Comparisons are made between the available experimental results in literature and FE analysis results obtained by the present investigators using load-deflection and load-strain plots as well as ultimate load of the strengthened beams. Furthermore, evaluation of crack patterns from FE analysis and experimental failure modes are discussed at the end.

Failure Behavior and Separation Criterion for Strengthened Concrete Members with Steel Plates (강판과 콘크리트 접착계면의 파괴거동 및 박리특성)

  • 오병환;조재열;차수원
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.126-135
    • /
    • 2002
  • Plate bonding technique has been widely used in strengthening of existing concrete structures, although it has often a serious problem of premature falure such as interface separation and rip-off. However, this premature failure problem has not been well explored yet especially in view of local failure mechanism around the interface of plate ends. The purpose of the present study is, therefore, to identify the local failure of strengthened plates and to derive a separation criterion at the interface of plates. To this end, a comprehensive experimental program has been set up. The double lap pull-out tests considering pure shear force and half beam tests considering combined flexure-shear force were performed. The main experimental parameters include plate thickness, adhesive thickness, and plate end arrangement. The strains along the longitudinal direction of steel plates have been measured and the shear stress were calculated from those measures strains. The effects of plate thickness, bonded length, and plate end treatment have been also clarified from the present test results. Nonlinear finite element analysis has been performed and compared with test results. The Interface properties are also modeled to present the separation failure behavior of strengthened members. The cracking patterns as well as maximum failure loads agree well with test data. The relation between maximum shear and normal stresses at the interface has been derived to propose a separation failure criterion of strengthened members. The present study allows more realistic analysis and design of externally strengthened flexural member with steel plates.