• 제목/요약/키워드: externally bonded fiber reinforced polymer

검색결과 36건 처리시간 0.025초

Finite element analysis of CFRP laminate repairs on damaged end regions of prestressed concrete bridge girders

  • Shaw, Ian D.;Andrawes, Bassem
    • Advances in Computational Design
    • /
    • 제2권2호
    • /
    • pp.147-168
    • /
    • 2017
  • Over the past couple decades, externally bonded fiber reinforced polymer (FRP) composites have emerged as a repair and strengthening material for many concrete infrastructure applications. This paper presents an analytical investigation of the use of carbon FRP (CFRP) for a specific problem that occurs in concrete bridge girders wherein the girder ends are damaged by excessive exposure to deicing salts and numerous freezing/thawing cycles. A 3D finite element (FE) model of a full scale prestressed concrete (PC) I-girder is used to investigate the effect of damage to the cover concrete and stirrups in the end region of the girder. Parametric studies are performed using externally bonded CFRP shear laminates to determine the most effective repair schemes for the damaged end region under a short shear span-to-depth ratio. Experimental results on shear pull off tests of CFRP laminates that have undergone accelerated aging are used to calibrate a bond stress-slip model for the interface between the FRP and concrete substrate and approximate the reduced bond stress-slip properties associated with exposure to the environment that causes this type of end region damage. The results of these analyses indicate that this particular application of this material can be effective in recovering the original strength of PC bridge girders with damaged end regions, even after environmental aging.

Tensile response of steel/CFRP adhesive bonds for the rehabilitation of civil structures

  • Matta, F.;Karbhari, Vistasp M.;Vitaliani, Renato
    • Structural Engineering and Mechanics
    • /
    • 제20권5호
    • /
    • pp.589-608
    • /
    • 2005
  • There is a growing need for the development and implementation of new methods for the rapid and cost-effective rehabilitation of deteriorating steel structural components to offset the drawbacks related to welding and/or bolting in the field. Carbon fiber reinforced polymer (CFRP) composites provide a potential alternative as externally bonded patches for strengthening and repair of metallic structural members for building and bridge systems. This paper describes results of an investigation of tensile and fatigue response of steel/CFRP joints simulating scenarios of strengthening and crack-patching. It is shown that appropriately designed schemes, even when fabricated with levels of inaccuracy as could be expected in the field, can provide significant strain relief and load transfer capability. A simplified elasto-plastic closed form solution for stress analysis is presented, and validated experimentally. It is shown that the bond development length remains constant in the linear range, whereas it increases as the adhesive is deformed plastically. Fatigue resistance is shown to be at least comparable with the requirements for welded cover plates without attendant decreases in stiffness and strength.

Experimental study on RC beams externally bonded by CFRP sheets with and without end self-locking

  • Chaoyang Zhou;Yanan Yu;Chengfeng Zhou;Xuejun He;Yi Wang
    • Steel and Composite Structures
    • /
    • 제48권5호
    • /
    • pp.599-610
    • /
    • 2023
  • To avoid debonding failure, a novel type of hybrid anchorage (HA) is proposed in this study that uses a slotted plate to lock the ends of the fiber-reinforced polymer (FRP) sheet in addition to the usual bonding over the substrate of the strengthened member. An experimental investigation was performed on three groups of RC beams, which differed from one another in either concrete strength or steel reinforcement ratio. The test results indicate that the end self-locking of the CFRP sheet can improve the failure ductility, ultimate capacity of the beams and its utilization ratio. Although intermediate debonding occurred in all the strengthened beams, it was not a fatal mode of failure for the three specimens with end anchorage. Among them, FRP rupture occurred in the beam with higher concrete strength and lower steel reinforcement ratio, whereas the other two failed by concrete crushing. The beam strengthened by HA obtained a relatively high percentage of increase in ultimate capacity when the rebar ratio or concrete strength decreased. The expressions in the literature were inspected to calculate the critical loads at intermediate debonding, FRP rupturing and concrete crushing after debonding for the strengthened beam. Then, the necessity of further research is addressed.

Reliability study of CFRP externally bonded concrete beams designed by FIB bulletin 14 considering corrosion effects

  • Dehghani, Hamzeh
    • Advances in concrete construction
    • /
    • 제13권 2호
    • /
    • pp.191-198
    • /
    • 2022
  • FIB is introduced as the sole guideline for the design purpose that results in a practical relationship for the torsional capacity of concrete beams strengthened with carbon fiber-reinforced polymer (CFRP). This study applies first-order reliability method to assess the reliability evaluation of the torsional capacity of CFRP-strengthened beams on the basis of FIB guidelines. In terms of steel reinforcement losses, this study applies a corrosion model to investigate the ceaseless deterioration of the existing structure. Hence, the average of reliability indices varies between 2.68 and 2.80, indicating the reliability viewpoint of the design methodologies. The average values are somehow low compared to the target values of reliability (3.0 or 3.5) applied in the calibration stage of the FIB guideline. In this way, the partial safety factors may change in the forthcoming guideline revisions. For this aim, the reliability of strengthening ratio was applied to assess the variation in the average value of the reliability index with different partial safety factors. The performance of parametric study for the factor proved that minimum values of 1.60 and 2.32 are required for target values of reliability (3.0 and 3.5), respectively.

CFRP로 보강된 철근콘크리트 휨부재의 내화성능 개선을 위한 실험 (Experiment for the Improvement of Fire Resistance Capacity of Reinforced Concrete Flexural Member Strengthened with Carbon Fiber Reinforced Polymer)

  • 임종욱;서수연;송세기
    • 대한건축학회논문집:구조계
    • /
    • 제33권12호
    • /
    • pp.19-27
    • /
    • 2017
  • This paper is a study to improve the fire-resistance capacity of reinforced concrete (RC) members strengthened by fiber-reinforced-polymer (FRP). The fire resistance of the RC members strengthened by FRP was evaluated through high temperature exposure test. In order to improve the fire resistance of the FRP reinforcing method, a fire-proof board was attached to the reinforced FRP surface and then the high temperature exposure test was carried out to evaluate the improvement of the fire resistance performance. It was confirmed that the resistance to high temperature of NSMR could be improved somewhat compared with that of EBR from the experiment that exposed to high temperature under the load corresponding to 40% of nominal strength. When 30 mm thick fire-resistance (FR) board is attached to the FRP surface, the surface of the reinforced FRP does not reach $65^{\circ}C$, which is the glass transition temperature (GTT) of the epoxy until the external temperature reaches $480^{\circ}C$. In particular, when a high performance fire-proof mortar was first applied prior to FR board attachment, the FRP portion did not reach the epoxy glass transition temperature until the external temperature reached $600^{\circ}C$.

Behavior of RC columns strengthened with NSM and hybrid FRP under pure bending: Experimental and analytical study

  • Mohsen A. Shayanfar;Mohammad Ghanooni-Bagha;Solmaz Afzali
    • Computers and Concrete
    • /
    • 제34권4호
    • /
    • pp.393-408
    • /
    • 2024
  • In recent decades the strengthening of reinforced concrete (RC) structural elements using Fiber-reinforced polymer (FRP) has received much attention. The behavior of RC elements can vary from axial compression to pure bending, depending on their loading. When the compressive behavior is dominant, the FRP jacket application is common, but when the flexural behavior is prevalent, the codes consider the FRP jacket ineffective. Codes suggest applying FRP bars or strips as Near-surface Mounted (NSM) or Externally Bonded (EB) in the tensile face to strengthen the beams under flexure. To strengthen the columns in tension-control mode, some researchers have suggested NSM FRP bars in both tension and compression faces alone or with the FRP jacket (hybrid). However, the number of tests that evaluate the pure bending of the strengthened columns as one of the pivotal points of the axial force-moment interaction curve is limited. In this paper, 11 RC elements strengthened using the NSM (in both tension and compression faces) or hybrid method were subjected to bending to assess the effect of the amount and material type of the FRP bar and jacket and the dimensions of the groove. The test results revealed that the NSM method increased the flexural capacity of the members between 10% to 50%. Furthermore, using the hybrid method increased the capacity between 51% to 91%. Finally, an analytical model was presented considering the effect of the NSM FRP bond in different circumstances, and its results were in good agreement with the experimental results.

RC 부재의 휨 보강을 위한 외부 비부착형 탄소섬유판 포스트텐션 시스템 (Post-tensioning System with Externally Unbonded CFRP Strips for Strengthening RC Members)

  • 유영찬;최기선;김긍환
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제12권6호
    • /
    • pp.147-154
    • /
    • 2008
  • 본 연구에서는 외부 비부착형 프리스트레스트 탄소섬유판으로 보강된 RC보의 휨거동을 분석하기 위한 실험연구를 수행하였다. 실험체는 프리스트레스 양 및 정착장치의 형상을 변수로 총 10개로 제작되었다. 또한 프리스트레스의 도입에 따른 구조성능 비교를 위하여 기준실험체와 단순부착 실험체를 함께 제작하였다. 실험결과, 단순 부착 탄소섬유판으로 보강된 부재는 조기 박리에 의해 탄소섬유판 인장강도의 50% 이하에서 최종파괴되었다. 그러나, 프리스트레스를 도입하여 보강한 실험체는 모두 탄소섬유판의 파단하중까지 도달하였다. 또한 스터드형 정착장치를 적용한 실험체들의 보강성능은 매립형 정착장치를 적용한 실험체와 동등한 보강성능을 나타내었다.

An experimental investigation on effect of elevated temperatures on bond strength between externally bonded CFRP and concrete

  • Attari, Behzad;Tavakkolizadeh, Mohammadreza
    • Steel and Composite Structures
    • /
    • 제32권5호
    • /
    • pp.559-569
    • /
    • 2019
  • The bond strength between composite laminates and concrete is a key factor that controls the behavior of concrete members strengthened with fiber reinforced polymer (FRP) sheets, which can be affected by several parameters such as thermal stresses and surface preparation. This article presents the result of an experimental study on the bond strength between FRP sheets and concrete at ambient temperature after specimens had been exposed to elevated temperatures of up to $200^{\circ}C$. For this purpose, 30 specimens of plain concrete with dimensions of $150{\times}150{\times}350mm$ were prepared. Three different conventional surface preparation methods (sandblasting, wire brushing and hole drilling) were considered and compared with a new efficient method (fiber implantation). Deformation field during each experiment was monitored using particle image velocimetry. The results showed that, the specimens which were prepared by conventional surface preparation methods, preserved their bond integrity when exposed to temperature below glass transition temperature of epoxy resin (about $60^{\circ}C$). Beyond this temperature, the bond strength and stiffness decreased significantly (about 50%) in comparison with control specimens. However, the specimens prepared by the proposed method displayed higher bond strengths of up to 32% and 90% at $25^{\circ}C$ and $200^{\circ}C$, respectively.

긴장된 CFRP판으로 보강된 대규모 RC 슬래브의 휨성능 평가 (Evaluation of Flexural Strength Capacity of Large Scale RC Slabs Strengthened with Prestressed CFRP Plate)

  • 홍기남;한상훈;이병노;권용길
    • 한국안전학회지
    • /
    • 제25권3호
    • /
    • pp.71-77
    • /
    • 2010
  • This paper presents the results of a study on flexural capacity of large size RC slabs strengthened with carbon fiber reinforced polymer(CFRP) plates. A total of 5 specimens of 6.0m length were tested in four point bending after strengthening them with externally bonded CFRP plates. The CFRP plates were bonded without prestress and with two prestress levels, 0.4% and 0.6% of CFRP plate strain. Test variables included the type of strengthening, prestressing level, and the effects according to each test variables are analysed. The experimental results show that proposed methods can increase significantly the flexural capacity such as strength, stiffness of the beam and the increase ranged between 36.2% and 63.2% of the load-carrying capacity of the control beams. The non-prestressed specimen failed by separation of the plate from the beam due to premature debonding while most of the prestressed specimens failed by CFRP plate fracture. And the cracking loads and maximum loads were increased proportionally to the prestress level.

Rapid Repair of Severely Damaged RC Columns with Different Damage Conditions: An Experimental Study

  • He, Ruili;Sneed, Lesley H.;Belarbi, Abdeldjelil
    • International Journal of Concrete Structures and Materials
    • /
    • 제7권1호
    • /
    • pp.35-50
    • /
    • 2013
  • Rapid and effective repair methods are desired to enable quick reopening of damaged bridges after an earthquake occurs, especially for those bridges that are critical for emergency response and other essential functions. This paper presents results of tests conducted as a proof-of-concept in the effectiveness of a proposed method using externally bonded carbon fiber reinforced polymer (CFRP) composites to rapidly repair severely damaged RC columns with different damage conditions. The experimental work included five large-scale severely damaged square RC columns with the same geometry and material properties but with different damage conditions due to different loading combinations of bending, shear, and torsion in the previous tests. Over a three-day period, each column was repaired and retested under the same loading combination as the corresponding original column. Quickset repair mortar was used to replace the removed loose concrete. Without any treatment to damaged reinforcing bars, longitudinal and transverse CFRP sheets were externally bonded to the prepared surface to restore the column strength. Measured data were analyzed to investigate the performance of the repaired columns compared to the corresponding original column responses. It was concluded that the technique can be successful for severely damaged columns with damage to the concrete and transverse reinforcement. For severely damaged columns with damaged longitudinal reinforcement, the technique was found to be successful if the damaged longitudinal reinforcement is able to provide tensile resistance, or if the damage is located at a section where longitudinal CFRP strength can be developed.