• Title/Summary/Keyword: exterior angle

Search Result 77, Processing Time 0.023 seconds

Predicting shear strength of RC exterior beam-column joints by modified rotating-angle softened-truss model

  • Wong, Simon H.F.;Kuang, J.S.
    • Computers and Concrete
    • /
    • v.8 no.1
    • /
    • pp.59-70
    • /
    • 2011
  • A theoretical model known as the modified rotating-angle softened-truss model (MRA-STM), which is a modification of Rotating-Angle Softened-Truss Model and Modified Compression Field Theory, is presented for the analysis of reinforced concrete membranes in shear. As an application, shear strength and behaviour of reinforced concrete exterior beam-column joints are analysed using the MRA-STM combining with the deep beam analogy. The joints are considered as RC panels and subjected to vertical and horizontal shear stresses from adjacent columns and beams. The strut and truss actions in a beam-column joint are represented by the effective transverse compression stresses and a softened concrete truss in the proposed model. The theoretical predictions of shear strength of reinforced concrete exterior beam-column joints from the proposed model show good agreement with the experimental results.

The Survey Analysis on the Exterior Connection Facility Conditions of University Campuses for Handicapped Students (장애학생을 위한 대학캠퍼스 옥외매개시설의 실태에 관한 조사 분석)

  • Choi, Jang-Soon
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.14 no.1
    • /
    • pp.21-28
    • /
    • 2012
  • Campus facilities were recently remodeled to provide the substantial learning rights of handicapped students in many campus to embody the dignity and value as man. So this study aims to identify the exterior connection facilities for handicapped students of S and D campuses. The summaries of this research are as follows. Installations of even crossing area(1.5mx1.5m) per 50m and even rest area(1.5mx1.5m) per 30m in walking or access ramp. Improving in accordance with exterior connection facility repairing master plan in S campus. Bringing down an angle degrees of the inclined walking or access ramp in D campus. Installation of exterior braille guide sign for blind students. All handicapped students must be guaranteed the same learning rights as normal men to remove obstacles as the upper mentioned imperfections in using exterior campus facilities.

Improved bracing systems to prevent exterior girder rotation during bridge construction

  • Ashiquzzaman, Md;Ibrahim, Ahmed;Lindquist, Will;Hindi, Riyadh
    • Steel and Composite Structures
    • /
    • v.32 no.3
    • /
    • pp.325-336
    • /
    • 2019
  • Concrete placement and temporary formwork of bridge deck overhangs result in unbalanced eccentric loads that cause exterior girders to rotate during construction. These construction loads affect the global and local stability of the girders and produce permanent girder rotation after construction. In addition to construction loads, the skew angle of the bridge also contributes to girder rotation. To prevent rotation (in both skewed and non-skewed bridges), a number of techniques have been suggested to temporarily brace the girders using transverse tie bars connecting the top flanges and embedded in the deck, temporary horizontal and diagonal steel pipes placed between the webs of the exterior and first interior girders, and permanent cross frames. This study includes a rigorous three-dimensional finite element analysis to evaluate the effectiveness of several bracing systems for non-skewed and several skewed bridges. In this paper, skew angles of $0^{\circ}$, $20^{\circ}$, $30^{\circ}$, and $45^{\circ}$ were considered for single- and three-span bridges. The results showed that permanent cross frames worked well for all bridges, whereas temporary measures have limited application depending on the skew angle of the bridge.

An Investigation of Bisector of Interior and Exterior Angles in Triangle by Using Analogy (유추를 이용한 삼각형의 각의 이등분선 성질 탐구)

  • 한인기
    • The Mathematical Education
    • /
    • v.41 no.2
    • /
    • pp.215-225
    • /
    • 2002
  • In this paper we consider some properties of. bisector of interior angle(theorem 1) and exterior angle(theorem 2) in triangle by using analogy. As a result of analyzing various mathematics textbooks we have known that they focused not on relation between two theorems, but on describing two theorems. We have seen that theorem 2 is able to be inferred from theorem 1 by using analogy. After proving theorem 1 by some methods we analyze proof process, extract proof ideas, and analogize some ideas for proving theorem 2. From this we are able to find relationships between theorem 1 and 2.

  • PDF

A Study on the Structural Performance of the Building Exterior Panel Using the Moving Clips (이동 클립을 이용한 건축물 외장재의 구조적 성능에 관한 연구)

  • Kwak, Eui-Shin;Ki, Chang-Gun;Lee, Sang-Ho;Shon, Su-Deok;Lee, Seung-Jae
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.29-36
    • /
    • 2017
  • A recent global trend in the increase of earthquake-related disasters has become so frequent as to cause various damages to a wide range of mid- to high-rise buildings. Particularly, more attention is being paid to the effect of horizontal load in high-rise buildings not only on the key structural elements of the structures, but also on the possibility of the secondary damages to them due to the failure of exterior panels, which are non-structural elements, but such damages are difficult to cope with as they may be caused by unexpected changes. The present study examined exterior panels using moving clips to prevent such secondary damages on the non-structural elements and analyzed the structural performance of these exterior panels through the finite element analysis and the shaking table test. The analysis results showed that the exterior panels using moving clips satisfied the structural performance against the allowable story drift of KBC2009 and the safety of the exterior panels was verified by the shake table test.

ON THE EXISTENCE OF INSCRIBED POLYGONS

  • Lim, So Yeon;Jin, Hong Sung;Lee, Kwang Seuk;Park, Myeongsoo;Kim, Dong-Soo
    • Honam Mathematical Journal
    • /
    • v.40 no.1
    • /
    • pp.83-91
    • /
    • 2018
  • We consider the existence problem of inscribed n-gons ($n{\geq}5$) in a circle and find a necessary condition on exterior angles $a_1,\;{\cdots},\;a_n$ of an inscribed n-gon. Conversely, we show that this condition is sufficient for an inscribed polygon with exterior angles $a_1,\;{\cdots},\;a_n$ in this cyclic order to exist.

A simulation analysis of PV application method effect on electric power performance in an apartment wall facade (아파트 입면형 PV적용방식의 발전성능효과해석 연구)

  • Seo, Jung-Hun;Huh, Jung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.3
    • /
    • pp.25-32
    • /
    • 2006
  • The objective of this study is to investigate the effect of building integrated PV application method on power generation. PV modules were integrated to a hypothetical apartment building facade in Seoul, Korea. Three different design options of PV panel mounted on exterior wall were developed for the analysis of cooling effects through ventilation. Numerical simulations using TRNSYS coupled with COMIS were executed to evaluate the design options. Their facade configurations are such as vertically installed PV panels with or without air gap between PV rear surface and exterior wall surface, and the tilted PV panels attached to the exterior wall at an angle of to the horizontal. Parametric results show that there is little difference regardless of the air 9ap width between PV rear surface and exterior wall surface. Special strategies which could effectively cool a PV panel to increase the electric power are required if we prefer to a vertical facade configuration in a building integrated PV installation. Consequently, it is expected that there is no reason for architect to install vertically PV panels with air gap unless active strategies are considered.

Collapse assessment and seismic performance factors in tall tube-in-tube diagrid buildings

  • Khatami, Alireza;Heshmati, Mahdi;Aghakouchak, Ali Akbar
    • Earthquakes and Structures
    • /
    • v.19 no.3
    • /
    • pp.197-214
    • /
    • 2020
  • Diagrid structures have been introduced as a fairly modern lateral load-resisting system in the design of high-rise buildings. In this paper, a novel diagrid system called tube-in-tube diagrid building is introduced and assessed through pushover and incremental dynamic analyses. The main objectives of this paper are to find the optimum angle of interior and exterior diagrid tube and evaluate the efficiency of diagrid core on the probability of collapse comparing to the conventional diagrid system. Finally, the seismic performance factors of the proposed system are validated according to the FEMA P695 methodology. To achieve these, 36-story diagrid buildings with various external and internal diagonal angles are designed and then 3-D nonlinear models of these structures developed in PERFORM-3D. The results show that weight of steel material highly depends on diagonal angle of exterior tube. Adding diagrid core generally increases the over-strength factor and collapse margin ratio of tall diagrid buildings confirming high seismic safety margin for tube-in-tube diagrid buildings under severe excitations. Collapse probabilities of both structural systems under MCE records are less than 10%. Finally, response modification factor of 3.0 and over-strength factor of 2.0 and 2.5 are proposed for design of typical diagrid and tube-in-tube diagrid buildings, respectively.

Behaviour of bolted connections in concrete-filled steel tubular beam-column joints

  • Beena, Kumari;Naveen, Kwatra;Shruti, Sharma
    • Steel and Composite Structures
    • /
    • v.25 no.4
    • /
    • pp.443-456
    • /
    • 2017
  • Many authors have established the usefulness of concrete filled steel tubular (CFST) sections as compression members while few have proved their utility as flexural members. To explore their prospective as part of CFST frame structures, two types of connections using extended end plate and seat angle are proposed for exterior joints of CFST beams and CFST columns. To investigate the performance and failure modes of the proposed bolted connections subjected to static loads, an experimental program has been executed involving ten specimens of exterior beam-to-column joints subjected to monotonically increasing load applied at the tip of beam, the performance is appraised in terms of load deformation behaviour of joints. The test parameters varied are the beam section type, type and diameter of bolts. To validate the experimental behaviour of the proposed connections in CFST beam-column joints, finite element analysis for the applied load has been performed using software ATENA-3D and the results of the proposed models are compared with experimental results. The experimental results obtained agree that the proposed CFST beam-column connections perform in a semi-rigid and partial strength mode as per specification of EC3.

Bending Die System Design for Metal Panel Processing (금속패널가공을 위한 벤딩 다이시스템 설계)

  • Kim, Woo-Ki;Kim, Seung-Kyeum;Choi, Kye-Kwang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.276-280
    • /
    • 2008
  • The design technology to be developed in this study is technology related to the metal panel comer processing method of very high value-added, interior and exterior cladding material, in the architecture. This study is aimed at designing a Bending Die System that enables metal panel comer processing for the first time in Korea, by improving corrosion resistance (durability), weather resistance and elegances (design) for the connecting part of right angle cornering, where most serious problems occur in using metal steel plates of 2.5mm or thicker. This is used as a kind of metal ball and as architectural interior and exterior cladding material.