• Title/Summary/Keyword: exteranl prestressing

Search Result 2, Processing Time 0.496 seconds

Ultimate Stress of Prestressing Steel with Different Reinforcement and Tendon Depth in R.C Beams Strengthened by External Prestressing (외부 프리스트레싱으로 보강된 R.C 보에서 강재량 및 텐던깊이에 따른 프리스트레싱 강재의 극한응력)

  • Park, Sang-Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.4
    • /
    • pp.585-593
    • /
    • 2003
  • This study deals with literature review, developing a predicting equation for the ultimate stress of prestressing steel, and experimental test with the parameters affecting the ultimate stress of prestressing steel in reinforced concrete beams strengthened by external prestressing. The ACI predicting equation for the ultimate stress of unbonded prestressing steel is analyzed to develop a new integrated predicting equation. The proposed predicting equation takes rationally the effect of internal reinforcing bars into consideration as a function of prestressing steel depth to neutral depth ratio. In the experimental study, steel reinforced concrete beams strengthened using external prestressing steel are tested with the test parameters having a large effect on the ultimate stress of prestressing steel. The test parameters includes reinforcing bar and external prestressing steel reinforcement ratios, and span to depth ratio. The test results are analyzed to confirm the rationality and applicability of the proposed equation for predicting the ultimate stress of external prestressing steel.

Evaluation on the Lost Prestressing Force of an External Tendon Using the Combination of FEM and HGA: II. Experimental Verification and Field Applications (FEM과 HGA의 조합을 이용한 외부 긴장재의 손실 긴장력 평가: II. 실험적 검증 및 현장적용)

  • Jang, Hang-Teak;Noh, Myung-Hyun;Park, Kyu-Sik;Park, Taehyo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.5 s.57
    • /
    • pp.121-132
    • /
    • 2009
  • This paper introduces an experimental verification and a field application of the proposed technique using the combination of FEM and HGA about the loss prestressing force of an exteranl tendon by above same authors. The vibration tests have been conducted by using a laboratory models and the externally prestressed tendon at the field and the natural frequencies are extracted from the vibration tests. The proposed technique based on the extracted natural frequencies is applied. It is seen that the errors in the tension and lost prestressing force by proposed technique are about 4% from a laboratory model test. For the model verification at field, exact modeling has beem made with Rayleigh damping. It is seen that the error in the tension by proposed technique is less than 1% and the estimated lost prestressing force converges less than the exact value.