• Title/Summary/Keyword: extended rod theory

Search Result 4, Processing Time 0.017 seconds

Two-dimensional rod theory for approximate analysis of building structures

  • Takabatake, Hideo
    • Earthquakes and Structures
    • /
    • v.1 no.1
    • /
    • pp.1-19
    • /
    • 2010
  • It has been known that one-dimensional rod theory is very effective as a simplified analytical approach to large scale or complicated structures such as high-rise buildings, in preliminary design stages. It replaces an original structure by a one-dimensional rod which has an equivalent stiffness in terms of global properties. If the structure is composed of distinct constituents of different stiffness such as coupled walls with opening, structural behavior is significantly governed by the local variation of stiffness. This paper proposes an extended version of the rod theory which accounts for the two-dimensional local variation of structural stiffness; viz, variation in the transverse direction as well as longitudinal stiffness distribution. The governing equation for the two-dimensional rod theory is formulated from Hamilton's principle by making use of a displacement function which satisfies continuity conditions across the boundary between the distinct structural components in the transverse direction. Validity of the proposed theory is confirmed by comparison with numerical results of computational tools in the cases of static, free vibration and forced vibration problems for various structures.

A simplified analysis of super building structures with setback

  • Takabatake, Hideo;Ikarashi, Fumiya;Matsuoka, Motohiro
    • Earthquakes and Structures
    • /
    • v.2 no.1
    • /
    • pp.43-64
    • /
    • 2011
  • One-dimensional rod theory is very effective as a simplified analytical approach to large scale or complicated structures such as high-rise buildings, in preliminary design stages. It replaces an original structure by a one-dimensional rod which has an equivalent stiffness in terms of global properties. The mechanical behavior of structures composed of distinct constituents of different stiffness such as coupled walls with opening is significantly governed by the local variation of stiffness. Furthermore, in structures with setback the distribution of the longitudinal stress behaves remarkable nonlinear behavior in the transverse-wise. So, the author proposed the two-dimensional rod theory as an extended version of the rod theory which accounts for the two-dimensional local variation of structural stiffness; viz, variation in the transverse direction as well as longitudinal stiffness distribution. This paper proposes how to deal with the two-dimensional rod theory for structures with setback. Validity of the proposed theory is confirmed by comparison with numerical results of computational tools in the cases of static, free vibration and forced vibration problems for various structures. The transverse-wise nonlinear distribution of the longitudinal stress due to the existence of setback is clarified to originate from the long distance from setback.

A Study on a Method of Rigid Body Movement Analysis -Mainly on Mandible Movement Parameter Determination- (강체 운동 해석 기법에 관한 연구 -하악골 운동 파라미터 결정 기법을 주로-)

  • Jung, Chae-Young;Song, Chul;Lee, Kwon-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.4
    • /
    • pp.301-314
    • /
    • 1990
  • This paper is an attempt to use vision-pattern recognition technique to analyzation on a hidden rigid body motion. Specially shaped rod, rigidly connected to the hidden body is extended to the ouside of hiding object so that a camera may catch the motion data. Every motion can be described with translatio and rotation. But translation can be explanied with ratation with a infinitly far centroid. Motion analysis is to find the instantaneous centroid and ratation angle. With this theory jaw motion is analyzed in this paper.

  • PDF

Application of Adaptive Control Theory to Nuclear Reactor Power Control (적응제어 기법을 이용한 원자로 출력제어)

  • Ha, Man-Gyun
    • Nuclear Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.336-343
    • /
    • 1995
  • The Self Tuning Regulator(STR) method which is an approach of adaptive control theory, is ap-plied to design the fully automatic power controller of the nonlinear reactor model. The adaptive control represent a proper approach to design the suboptimal controller for nonlinear, time-varying stochastic systems. The control system is based on a third­order linear model with unknown, time-varying parameters. The updating of the parameter estimates is achieved by the recursive extended least square method with a variable forgetting factor. Based on the estimated parameters, the output (average coolant temperature) is predicted one-step ahead. And then, a weighted one-step ahead controller is designed so that the difference between the output and the desired output is minimized and the variation of the control rod position is small. Also, an integral action is added in order to remove the steady­state error. A nonlinear M plant model was used to simulate the proposed controller of reactor power which covers a wide operating range. From the simulation result, the performances of this controller for ramp input (increase or decrease) are proved to be successful. However, for step input this controller leaves something to be desired.

  • PDF