• Title/Summary/Keyword: extended codes

Search Result 108, Processing Time 0.024 seconds

Behaviour and design of composite beams subjected to flexure and axial load

  • Kirkland, Brendan;Uy, Brian
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.615-633
    • /
    • 2015
  • Composite steel-concrete beams are used frequently in situations where axial forces are introduced. Some examples include the use in cable-stayed bridges or inclined members in stadia and bridge approach spans. In these situations, the beam may be subjected to any combination of flexure and axial load. However, modern steel and composite construction codes currently do not address the effects of these combined actions. This study presents an analysis of composite beams subjected to combined loadings. An analytical model is developed based on a cross-sectional analysis method using a strategy of successive iterations. Results derived from the model show an excellent agreement with existing experimental results. A parametric study is conducted to investigate the effect of axial load on the flexural strength of composite beams. The parametric study is then extended to a number of section sizes and employs various degrees of shear connection. Design models are proposed for estimating the flexural strength of an axially loaded member with full and partial shear connection.

Evaluating the effective spectral seismic amplification factor on a probabilistic basis

  • Makarios, Triantafyllos K.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.1
    • /
    • pp.121-129
    • /
    • 2012
  • All contemporary seismic Codes have adopted smooth design acceleration response spectra, which have derived by statistical analysis of many elastic response spectra of natural accelerograms. The above smooth design spectra are characterized by two main branches, an horizontal branch that is 2.5 times higher than the peak ground acceleration, and a declining parabolic branch. According to Eurocode EN/1998, the period range of the horizontal, flat branch is extended from 0.1 s, for rock soils, up to 0.8 s for softer ones. However, from many natural recorded accelerograms of important earthquakes, the real spectral amplification factor appears to be much higher than 2.5 and this means that the spectrum leads to an unsafe seismic design of the structures. This point is an issue open to question and it is the object of the present study. In the present paper, the spectral amplification factor of the smooth design acceleration spectra is re-calculated on the grounds of a known "reliability index" for a desired probability of exceedance. As a pilot scheme, the seismic area of Greece is chosen, as it is the most seismically hazardous area in Europe. The accelerograms of the 82 most important earthquakes, which have occurred in Greece during the last 38 years, are used. The soil categories are taken into account according to EN/1998. The results that have been concluded from these data are compared with the results obtained from other strong earthquakes reported in the World literature.

Seismic induced damageability evaluation of steel buildings: a Fuzzy-TOPSIS method

  • Shahriar, Anjuman;Modirzadeh, Mehdi;Sadiq, Rehan;Tesfamariam, Solomon
    • Earthquakes and Structures
    • /
    • v.3 no.5
    • /
    • pp.695-717
    • /
    • 2012
  • Seismic resiliency of new buildings has improved over the years due to better seismic codes and design practices. However, there is still large number of vulnerable and seismically deficient buildings. It is not economically feasible to retrofit and upgrade all vulnerable buildings, thus there is a need for rapid screening tool. Many factors contribute to the damageability of buildings; this makes seismic evaluation a complex multi-criteria decision making problem. Many of these factors are noncommensurable and involve subjectivity in evaluation that highlights the use of fuzzy-based method. In this paper, a risk-based framework earlier proposed by Tesfamariam and Saatcioglu (2008a) is extended using Fuzzy-TOPSIS method and applied to develop an evaluation and ranking scheme for steel buildings. The ranking is based on damageability that can help decision makers interpret the results and take appropriate decision actions. Finally, the application of conceptual model is demonstrated through a case study of 1994 Northridge earthquake data on seismic damage of steel buildings.

Self-Encoded Spread Spectrum and Turbo Coding

  • Jang, Won-Mee;Nguyen, Lim;Hempel, Michael
    • Journal of Communications and Networks
    • /
    • v.6 no.1
    • /
    • pp.9-18
    • /
    • 2004
  • Self-encoded multiple access (SEMA) is a unique realization of random spread spectrum. As the term implies, the spreading code is obtained from the random digital information source instead of the traditional pseudo noise (PN) code generators. The time-varying random codes can provide additional security in wireless communications. Multi-rate transmissions or multi-level grade of services are also easily implementable in SEMA. In this paper, we analyze the performance of SEMA in additive white Gaussian noise (AWGN) channels and Rayleigh fading channels. Differential encoding eliminates the BER effect of error propagations due to receiver detection errors. The performance of SEMA approaches the random spread spectrum discussed in literature at high signal to noise ratios. For performance improvement, we employ multiuser detection and Turbo coding. We consider a downlink synchronous system such as base station to mobile communication though the analysis can be extended to uplink communications.

KKR code conversion based on ontology (온톨로지 기반 KKR 코드 변환)

  • Kang, Min-Soo;Noh, Young-Sik;Byun, Yung-Cheol;Lee, Dong-Cheol;Jun, Kye-Suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.2
    • /
    • pp.484-492
    • /
    • 2011
  • KISA announced KKR code system observing the international standard, ISO/IEC 15459, in order to activate the domestic RFID industry and improve mutual operation among RFID services. In this paper, we propose the way on code conversion based on ontology methods so as to effectively convert various types of RFID KKR code data collected from RFID reader into URN code in the middleware based on the ALE standard spec of EPC global. The results of experiment show that various types of RFID KKR code data could be converted into URN codes successfully. This means that even though new types of KKR code are added, it can be extended easily by adding ontology information without rebuilding the middleware.

Extended JPEG Progressive Coding for Medical Image Archiving and Communication (확장 JPEG 표준을 이용한 점진식 의료 영상 압축)

  • Ahn, Chang-Beom;Han, Sang-Woo;Kim, Il-Yeon
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.2
    • /
    • pp.175-182
    • /
    • 1994
  • The international standard for digital compression and coding of continuous-tone still image known as JPEG (Joint Photographic Experts Group) standard is investigated for medical image archiving and communication. The JPEG standard has widely been accepted in the areas of electronic image communication, computer graphics, and multimedia applications, however, due to the lossy character of the JPEG compression its application to the field of medical imaging has been limited. In this paper, the JPEG standard is investigated for medical image compression with a series of head sections of magnetic resonance (MR) images (256 and 4096 graylevels, $256 {\times}256$size). Two types of Huffman codes are employed, i. e., one is optimized to the image statistics to be encoded and the other is a predetermined code, and their coding efficiencies are examined. From experiments, compression ratios of higher than 15 were obtained for the MR images without noticeable distortion. Error signal in the reconstructed images by the JPEG standard appears close to random noise. Compared to existing full-frame bit-allocation technique used for radiological image compression, the JPEG standard achieves higher compression with less Gibb's artifact. Feature of the progressive image build-up of the JPEG progressive coding may be useful in remote diognosis when data is transmitted through slow public communication channel.

  • PDF

Improvement of the MARS subcooled boiling model for a vertical upward flow

  • Ha, Tae-Wook;Jeong, Jae Jun;Yun, Byong-Jo
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.977-986
    • /
    • 2019
  • In the thermal-hydraulic system codes, such as MARS and RELAP5/MOD3, the Savannah River Laboratory (SRL) model has been adopted as a subcooled boiling model. It, however, has been shown that the SRL model cannot take into account appropriately the effects of inlet liquid velocity and hydraulic diameter on axial void fraction development. To overcome the problems, Ha et al. (2018) proposed a modified SRL model, which is applicable to low-pressure and low-Pe conditions (P < 9.83 bar and $Pe{\leq}70,000$) only. In this work, the authors extended the modified SRL model by proposing a new net vapor generation (NVG) model and a wall evaporation model so that the new subcooled boiling model can cover a wide range of thermal-hydraulic conditions with pressures ranging from 1.1 to 69 bar, heat fluxes of $97-1186kW/m^2$, Pe of 3600 to 329,000, and hydraulic diameters of 5-25.5 mm. The new model was implemented in the MARS code and has been assessed using various subcooled boiling experimental data. The results of the new model showed better agreements with measured void fraction data, especially at low-pressure conditions.

Time Synchronization over SpaceWire Network using Hop Count Information (홉 카운트 정보를 이용한 스페이스와이어 네트워크 시각동기화 방안)

  • Ryu, Sang-Moon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.715-718
    • /
    • 2016
  • SpaceWire invented for on-board data handling in a spacecraft has Time-Code defined for time synchronization over SpaceWire network. Delay and jitter of the transmission of Time-Code caused when a Time-Code travels through a network are the main reasons of time synchronization error. This work proposes a scheme that can reduce the time synchronization error by using extended Time-Codes. The proposed scheme can remove both transmission jitter and transmission delay. The scheme will be validated in a simulation environment built with OMNeT++.

  • PDF

Ultimate shear strength prediction model for unreinforced masonry retrofitted externally with textile reinforced mortar

  • Thomoglou, Athanasia K.;Rousakis, Theodoros C.;Achillopoulou, Dimitra V.;Karabinis, Athanasios I.
    • Earthquakes and Structures
    • /
    • v.19 no.6
    • /
    • pp.411-425
    • /
    • 2020
  • Unreinforced masonry (URM) walls present low shear strength and are prone to brittle failure when subjected to inplane seismic overloads. This paper discusses the shear strengthening of URM walls with Textile Reinforced Mortar (TRM) jackets. The available literature is thoroughly reviewed and an extended database is developed including available brick, concrete and stone URM walls retrofitted and subjected to shear tests to assess their strength. Further, the experimental results of the database are compared against the available shear strength design models from ACI 549.4R-13, CNR DT 215 2018, CNR DT 200 R1/2013, Eurocode 6 and Eurocode 8 guidelines as well as Triantafillou and Antonopoulos 2000, Triantafillou 1998, Triantafillou 2016. The performance of the available models is investigated and the prediction average absolute error (AAE) is as high as 40%. A new model is proposed that takes into account the additional contribution of the reinforcing mortar layer of the TRM jacket that is usually neglected. Further, the approach identifies the plethora of different block materials, joint mortars and TRM mortars and grids and introduces rational calibration of their variable contributions on the shear strength. The proposed model provides more accurate shear strength predictions than the existing models for all different types of the URM substrates, with a low AAE equal to 22.95%.

Delta-form-based method of solving high order spatial discretization schemes for neutron transport

  • Zhou, Xiafeng;Zhong, Changming;Li, Fu
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2084-2094
    • /
    • 2021
  • Delta-form-based methods for solving high order spatial discretization schemes are introduced into the reactor SN transport equation. Due to the nature of the delta-form, the final numerical accuracy only depends on the residuals on the right side of the discrete equations and have nothing to do with the parts on the left side. Therefore, various high order spatial discretization methods can be easily adopted for only the transport term on the right side of the discrete equations. Then the simplest step or other robust schemes can be adopted to discretize the increment on the left hand side to ensure the good iterative convergence. The delta-form framework makes the sweeping and iterative strategies of various high order spatial discretization methods be completely the same with those of the traditional SN codes, only by adding the residuals into the source terms. In this paper, the flux limiter method and weighted essentially non-oscillatory scheme are used for the verification purpose to only show the advantages of the introduction of delta-form-based solving methods and other high order spatial discretization methods can be also easily extended to solve the SN transport equations. Numerical solutions indicate the correctness and effectiveness of delta-form-based solving method.