• 제목/요약/키워드: exsolution

검색결과 22건 처리시간 0.02초

순경(順鏡) 페그마타이트에서 산출(産出)되는 석석(錫石), 콜럼바이트, 탄탈라이트 및 수반광물(隨伴鑛物)에 대한 광물화학(鑛物化學) (Mineral Chemistry of Cassiterite, Columbite, Tantalite and Associated Minerals from Soonkyoung Tin-bearing Pegmatite)

  • 김수영;문희수;박노영
    • 자원환경지질
    • /
    • 제22권4호
    • /
    • pp.327-339
    • /
    • 1989
  • 상동지역(上東地域), 순경(順鏡) 함광석(含鑛石) 페그마타이트에서는 석석(錫石)을 비롯하여 탄탈라이트-콜롬바이트, 그리고 함(含)Ta-금홍석(金紅石) 등(等)이 산출(産出)된다. 석석(錫石)은 산포상(散布狀)의 미정질(微晶質)에서부터 거정질(巨晶質)에 이르기까지 다양(多樣)하며, 일반적(一般的)으로 탄탈라이트-콜롬바이트, 함(含)Ta-금홍석(金紅石)과 공존(共存)하고 있다. 탄탈라이트-콜롬바이트는 미세맥(微細脈) 혹은 용리상능(溶離狀能)로서 석석결정(錫石結晶)에 배태(胚胎)되며 간혹 독립광물(獨立鑛物)로서 석영(石英)에 수반(隨伴)되는 경우가 있다. 함(含)Ta-금홍석(金紅石)은 상기(上記)한 광물(鑛物) 중 최후기상(最後期相)으로서 석영(石英)을 수반(隨伴)하는 세맥상(細脈狀)으로 산출(産出)된다. 석석(錫石)에서 ${\Sigma}Ta^{+5}$, $Nb^{+4}$, $Ti^{+4}$ 및 Fe*은 $Sn^{+4}$과 부(負)의 상관관계(相關關係)로 치환(置換)에 전적(全的)으로 관계(關係)하고 있으며, 0.01-0.15mol.% 까지 치환(置換)하고 있다. $Ta^{+5}$$Nb^{+5}$는 Fe* 쌍치환관계(雙置換關係)이며 $Ta^{+5}$$Ti^{+4}$와 화학적(化學的) 친화관계(親化關係)로서 밀접(密接)히 수반(隨伴)된다. 이상구조(異常構造)가 발달(發達)된 석석(錫石)은 결정(結晶)의 내핵(內核)에서부터, 외각(外殼)으로 갈수록 Ta/Nb 비(比)가 증가(增加)하며, 이는 온도(溫度)의 하강(下降)에 따른 Ta의 참여효과(參與效果) 가 높아지는데 기인(起因)된다. 함(含)Ta-금홍석(金紅石)은 $TiO_2$:57.41-86.00wt.%, $Ta_2O_5$:5.08-21.51 wt.%, $Nb_2O_5$:1.60-6.81 wt.%, FeO*:2.06-5.85 wt.% 그리고 $SnO_2$:1.74-10.35 wt.%의 화학조성(化學造成)으로 구성(構成)되어 있다. 본 광물(鑛物)은 탄탈라이트-콜롬바이트에 비(比)하여 Ta/Ta+Nb의 비(比)가 높다. 탄탈라이트-콜롬바이트의 화학조성(化學造成)에 의하면, Ta/Ta+Nb가 증가(增加)하고, Mn/Mn+Fe*는 감소(減少)하는 분결경향(分結傾向)을 보여 주고 있다. 이것은 분결작용(分結作用)이 진행(進行)되는 동안 Ta의 활동도(活動度)가 증가(增加)되는 것으로 Li과 F가 고갈(枯渴)되고, Be과 P가 풍부(豊富)한 환경(環境)을 지시(指示)하는 것이다. 이와같은 환경(環境)은 순경(順鏡) 페그마타이트에 Li과 F 운모(雲母)의 부재(否在)와 탄탈라이트와 녹주석(綠柱石)이 석석(錫石) 광화작용(鑛化作用)과 밀접(密接)히 수반(隨伴)되는 것과 일치(一致)하는 것이다. 본 페그마타이트는 Ta-Be 복합형(複合型)의 페그마타이트로서 석석(錫石)은 탄탈라이트-콜룸바이트, 녹주석(綠柱石) 등(等)의 분결작용(分結作用)을 수반(隨伴)하며 형성(形成)되었다.

  • PDF

옥천(沃川) 변성대(變成帶)에 분포하는 쥬라기(紀) 대전(大田) 및 논산(論山) 화강암류(花崗岩類)의 암석지화학적(岩石地化學的) 연구(硏究) (Petrology and Geochemistry of Jurassic Daejeon and Nonsan Granitoids in the Ogcheon Fold Belt, Korea)

  • 홍영국
    • 자원환경지질
    • /
    • 제17권3호
    • /
    • pp.179-195
    • /
    • 1984
  • 쥬라기(紀) 대전복운모화강암(大田複雲母花崗岩)과 논산화강섬록암(論山花崗閃綠岩)은 Syntectonic 칼크-알카라인 subsolvus 화강암류(花崗岩類)에 속(屬)한다. 본(本) 화강암류(花崗岩類)들은 CaO, $Al_2O_3$, LIL/HFS 원소비(元素比), 전(全) REE 함량(含量)과 ($^{87}Sr/^{88}Sr$) 초생치(初生値)가 높고 Eu 루상치(累常値)가 거의 없으며 HREE[(Ce/Yb)N=20~120]와 Y함량(含量)이 낮은것은 선(先)-캠브리아기(紀) Granulite(예(例) ; 회색편마암(灰色片麻岩))의 부분용융(部分熔融)에 의(依)하여 형성(形成)된 것으로 사료(思料)된다("S-type"). 특(特)히, 희토류원소(稀土類元素)의 분석결과(分析結果)에 의(依)하면 본(本) 화강암류(花崗岩類)가 형성(形成)되는 과정(過程)에서 hornblende와 garnet가 근원암(根源岩)(선(先)-캠브리아기(紀) Granulite)으로 부터 분리(分離) 용융(熔融)되지 않고 residue로 남았으며, 또한 장석(長石)은 부분용융(部分熔融)에 의(依)하여 형성(形成)된 magma내(內)에서 분결(分結)(fractionation)되지 않고 incompatible behaviour를 취(取)했음이 밝혀졌다. 이들 두 화강암류(花崗岩類)는 희토류원소(稀土類元素)의 분포상(分布相)에 있어서 거의 동일(同一)하지만, 그들의 광물조성(鑛物組成) 및 주원소(主元素)등의 차이(差異)는 근원암(根源岩)의 부분용융(部分熔融) 과정중(過程中) 용융비율상(熔融比率上)의 차이(差異)때문이다. 즉(卽), 대전복운모화강암(大田複雲母花崗岩)은 논산화강섬록암(論山花崗閃綠岩)에 비(比)하여 "낮은 비율(比率)"로 부분용융(部分熔融)되어 형성(形成)된 것으로 생각(生覺)된다. 근원암(根源岩)이 부분용융(部分熔融)될 수 있는 열원(熱源)은 microcontinental collision과 basement 재활성화(再活性化)에 따라 옥천지향사(沃川地向斜)가 closing 되는 지각변동(地殼變動)에 의(依)하여 공급가능(供給可能)할 것이다. 특(特)히, 대보조산운동(大寶造山運動)에 수반된 광역변성작용시(廣域變成作用時) 운모(雲母)와 같은 함수광물(含水鑛物)들의 탈수작용(脫水作用)에 의(依)하여 생성(生成)된 수분(水分)은 부분용융(部分熔融)을 더욱 용이(容易)하게 했다. 각(各) 화강암체내(花崗岩體內)에 함유(含有)된 퍼시틱 알카리-장석(長石)들의 Exsolution 온도(溫度)가 대체(大體)로 작은 변화폭(變化幅)을 가지는 것은 화강암류(花崗岩類) 매입시기(買入時期)에 주위모암(母岩)들도 열류량(熱流量)이 높은 지역(地域)에 위치(位置)해 있었으며, 그후(後) 화강암류(花崗岩類)와 함께 천천히 영각되었기 때문인 것으로 사료(思料)된다.

  • PDF