• Title/Summary/Keyword: expression of pro-inflammatory genes

Search Result 124, Processing Time 0.027 seconds

Antioxidant and Anti-inflammatory Effects of Taraxacum hallaisanense Nakai Extracts (좀민들레(Taraxacum hallaisanense Nakai) 추출물의 항산화 및 항염증 활성 효과)

  • Nan, Li;Choo, Byung-Kil
    • Korean Journal of Organic Agriculture
    • /
    • v.26 no.3
    • /
    • pp.501-514
    • /
    • 2018
  • Taraxacum hallaisanense (pr), a species of the family Compositae is a perennial herb plants that inhabit to Jeju Island. In the study, we performed to determine the anti-inflammatory effects in LPS-induced RAW 264.7 cells and antioxidant activity of ethanol extracts from T. hallaisanense whole plants. The antioxidant activity of extracts was measured by contents of polyphenol and flavonoid, DPPH radical scavenging, and reducing power activity. The anti-inflammatory effect of T. hallaisanense extracts was measured by NO and $IL-1{\beta}$ production inhibitory activity and the expression of pro-inflammatory in lipopolysaccharide (LPS)-induced Raw 264.7 cells. Also, the expression of pro-inflammatory genes such as iNOS, COX-2 and NF-kB protein were reduced. In the cytotoxicity measurement by cytotoxicity kit, the extract was exhibited Raw 264.7 cell viabilities as nontoxic result in concentration of $25{\sim}400{\mu}g/ml$. These results indicated that ethanol extracts of T. hallaisanense whole plants expected development possibility as nutrial additives through high anti-inflammatory effects and antioxidant activity.

Methyl p-Hydroxycinnamate Suppresses Lipopolysaccharide-Induced Inflammatory Responses through Akt Phosphorylation in RAW264.7 Cells

  • Vo, Van Anh;Lee, Jae-Won;Shin, Seung-Yeon;Kwon, Jae-Hyun;Lee, Hee Jae;Kim, Sung-Soo;Kwon, Yong-Soo;Chun, Wanjoo
    • Biomolecules & Therapeutics
    • /
    • v.22 no.1
    • /
    • pp.10-16
    • /
    • 2014
  • Derivatives of caffeic acid have been reported to possess diverse pharmacological properties such as anti-inflammatory, anti-tumor, and neuroprotective effects. However, the biological activity of methyl p-hydroxycinnamate, an ester derivative of caffeic acid, has not been clearly demonstrated. This study aimed to elucidate the anti-inflammatory mechanism of methyl p-hydroxycinnamate in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. Methyl p-hydroxycinnamate significantly inhibited LPS-induced excessive production of pro-inflammatory mediators such as nitric oxide (NO) and $PGE_2$ and the protein expression of iNOS and COX-2. Methyl p-hydroxycinnamate also suppressed LPS-induced overproduction of pro-inflammatory cytokines such as IL-$1{\beta}$ and TNF-${\alpha}$. In addition, methyl p-hydroxycinnamate significantly suppressed LPS-induced degradation of $I{\kappa}B$, which retains NF-${\kappa}B$ in the cytoplasm, consequently inhibiting the transcription of pro-inflammatory genes by NF-${\kappa}B$ in the nucleus. Methyl p-hydroxycinnamate exhibited significantly increased Akt phosphorylation in a concentration-dependent manner. Furthermore, inhibition of Akt signaling pathway with wortmaninn abolished methyl p-hydroxycinnamate-induced Akt phosphorylation. Taken together, the present study clearly demonstrates that methyl p-hydroxycinnamate exhibits anti-inflammatory activity through the activation of Akt signaling pathway in LPS-stimulated RAW264.7 macrophage cells.

Anti-inflammatory Effect of Mugi-hwan Water Extract in RAW 264.7 Cells (무기환(戊己丸)의 RAW 264.7 세포에 대한 항염증작용 연구)

  • Kim, Ilhyun;Choi, Chonghwan;Lee, Sewon;Song, Yungsun
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.23 no.3
    • /
    • pp.27-35
    • /
    • 2013
  • Objectives The aim of this study was to investigate anti-inflammatory activity of Mugi-hwan (MGH) Water Extract. Methods Cells were treated with 2 ug/ml of LPS 1 hour prior to the addition of MGH. Cell viability was measured by MTS assay. The production of NO was determined by reacting cultured medium with Griess reagent. The expression of COX-2, iNOS and MAPKs was investigated by Western blot, RT-PCR. The content of level of cytokines ($PGE_2$, IL-6, in media from LPS-stimulated Raw 264.7 cells was analyed by ELISA kit. Results MGH inhibited the production of NO, $PGE_2$, IL-6 as well as the expressions of iNOS, COX-2 in the murine macrophage, RAW 264.7 cells. MGH also had suppression effects of LPS induced MAPKs activation. Conclusions These results suggest that MGH has an anti-inflammatory therapeutic potential, which may result from inhibition of MAPK phosphorylation, thereby decreasing the expression of pro-inflammatory genes.

Trypanosoma cruzi Dysregulates piRNAs Computationally Predicted to Target IL-6 Signaling Molecules During Early Infection of Primary Human Cardiac Fibroblasts

  • Ayorinde Cooley;Kayla J. Rayford;Ashutosh Arun;Fernando Villalta;Maria F. Lima;Siddharth Pratap;Pius N. Nde
    • IMMUNE NETWORK
    • /
    • v.22 no.6
    • /
    • pp.51.1-51.20
    • /
    • 2022
  • Trypanosoma cruzi, the etiological agent of Chagas disease, is an intracellular protozoan parasite, which is now present in most industrialized countries. About 40% of T. cruzi infected individuals will develop severe, incurable cardiovascular, gastrointestinal, or neurological disorders. The molecular mechanisms by which T. cruzi induces cardiopathogenesis remain to be determined. Previous studies showed that increased IL-6 expression in T. cruzi patients was associated with disease severity. IL-6 signaling was suggested to induce pro-inflammatory and pro-fibrotic responses, however, the role of this pathway during early infection remains to be elucidated. We reported that T. cruzi can dysregulate the expression of host PIWI-interacting RNAs (piRNAs) during early infection. Here, we aim to evaluate the dysregulation of IL-6 signaling and the piRNAs computationally predicted to target IL-6 molecules during early T. cruzi infection of primary human cardiac fibroblasts (PHCF). Using in silico analysis, we predict that piR_004506, piR_001356, and piR_017716 target IL6 and SOCS3 genes, respectively. We validated the piRNAs and target gene expression in T. cruzi challenged PHCF. Secreted IL-6, soluble gp-130, and sIL-6R in condition media were measured using a cytokine array and western blot analysis was used to measure pathway activation. We created a network of piRNAs, target genes, and genes within one degree of biological interaction. Our analysis revealed an inverse relationship between piRNA expression and the target transcripts during early infection, denoting the IL-6 pathway targeting piRNAs can be developed as potential therapeutics to mitigate T. cruzi cardiomyopathies.

Protective Effect of Ginsenoside Rb1 on Hydrogen Peroxide-induced Oxidative Stress in Rat Articular Chondrocytes

  • Kim, Sok-Ho;Na, Ji-Young;Song, Ki-Bbeum;Choi, Dea-Seung;Kim, Jong-Hoon;Kwon, Young-Bae;Kwon, Jung-Kee
    • Journal of Ginseng Research
    • /
    • v.36 no.2
    • /
    • pp.161-168
    • /
    • 2012
  • The abnormal maturation and ossification of articular chondrocytes play a central role in the pathogenesis of osteoarthritis (OA). Inhibiting the enzymatic degradation of the extracellular matrix and maintaining the cellular phenotype are two of the major goals of interest in managing OA. Ginseng is frequently taken orally, as a crude substance, as a traditional medicine in Asian countries. Ginsenoside $Rb_1$, a major component of ginseng that contains an aglycone with a dammarane skeleton, has been reported to exhibit various biological activities, including anti-inflammatory and anti-tumor effects. However, a chondroprotective effect of ginsenoside $Rb_1$ related to OA has not yet been reported. The purpose of this study was to demonstrate the chondroprotective effect of ginsenoside $Rb_1$ on the regulation of pro-inflammatory factors and chondrogenic genes. Cultured rat articular chondrocytes were treated with 100 ${\mu}M$ ginsenoside $Rb_1$ and/or 500 ${\mu}M$ hydrogen peroxide ($H_2O_2$) and assessed for viability, reactive oxygen species production, nitric oxide (NO) release, and chondrogenic gene expression. Ginsenoside $Rb_1$ treatment resulted in reductions in the levels of pro-inflammatory cytokine and NO in $H_2O_2$-treated chondrocytes. The expression levels of chondrogenic genes, such as type II collagen and SOX9, were increased in the presence of ginsenoside $Rb_1$, whereas the expression levels of inflammatory genes related to chondrocytes, such as MMP1 and MMP13, were reduced by approximately 50%. These results suggest that ginsenoside $Rb_1$ has potential for use as a therapeutic agent in OA patients.

Effect of Gagam-Danguieumja through Regulation of MAPK on LPS-Induced Inflammation in RAW 264.7 Cells (LPS로 유도된 RAW 264.7 cell의 염증반응에서 MAPK 조절에 의한 가감당귀음자(加減當歸飮子)의 항염증 효과)

  • Kim, Tae-Yeon
    • The Journal of Internal Korean Medicine
    • /
    • v.34 no.4
    • /
    • pp.339-348
    • /
    • 2013
  • Objectives : Danguieumja is a traditional medicinal prescription to treat skin disease. It was commonly used for the treatment of itching, chronic urticaria and atopic dermatitis in Korea by the addition or omission of several herbs. This study investigated the anti-inflammatory potential of Gagam-Danguieumja (GDE) water extract. Methods : We examined the effects of GDE on the lipopolysaccharide (LPS)-induced production of nitric oxide (NO) in a murine macrophage cell line, RAW 264.7 cells. Results : GDE inhibited production of NO in a dose dependent manner and also decreased the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2). As a possible molecular mechanism of anti-inflammatory effect increased phosphorylation of mitogen-activating protein kinases (MAPK) by LPS were blocked by GDE treatment. Conclusions : These results suggest that GDE has an anti-inflammatory therapeutic potential through the inhibition of MAPK phosphorylation, thereby decreasing the expression of pro-inflammatory genes.

The Anti-inflammatory Effects of Probiotic-produced Exopolysaccharide (프로바이오틱스 생산 exopolysaccharide에 의한 항염증 활성)

  • Lee, Seung Hoon;Kwon, Min-Jeong;Kang, Hyung-Taek;Chung, Chung Wook;Kim, Byung Oh;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.25 no.6
    • /
    • pp.709-714
    • /
    • 2015
  • The present study isolated seven different kinds of probiotics from various food sources and identified them with Bacillus sp. and Lactobacillus sp. by 16S rDNA sequencing. Their supernatants were prepared after a 24 hr culture, and their effects on nitric oxide (NO) production in mouse RAW 264.7 cells were investigated. Among the treated samples, the culture supernatants of two strains (Bacillus sp. FG-1 and Lactobacillus sp. FG-6) significantly decreased NO production in LPS-activated RAW 264.7 cells. Moreover, they dramatically reduced the expression of pro-inflammatory genes such as COX-2, iNOS, and TNF-α. To examine whether exopolysaccharide (EPS) is responsible for the anti-inflammatory effects of probiotics, EPS was purified from the culture supernatants of Bacillus sp. FG-1 and Lactobacillus sp. FG-6 strains. The EPS treatment produced by FG-1 and FG-6 strains decreased NO production in a dose-dependent manner in LPS-stimulated RAW 264.7 cells without affecting cell viability, while also reducing pro-inflammatory gene expression. Overall, these results suggest that EPS might be one of the key molecules responsible for the anti-inflammatory effects of probiotics.

Survey of the Expression Pattern and Immuno Stimulatory Effect of DNA Vaccine Using β-Galactosidase Reporter System in Olive Flounder (Paralichthys olivaceus)

  • Lee Sang-Jun;Hong Suhee;An Kyong-Jin;Kim Young-Ok
    • Fisheries and Aquatic Sciences
    • /
    • v.7 no.2
    • /
    • pp.70-75
    • /
    • 2004
  • The CMV promoter driven lacZ reporter gene (pcDNA-lacZ) was constructed and used for DNA immunization study. The expression of the lacZ gene was confirmed in vitro using RTG-2 cell line before using for in vivo study in olive flounder (Paralichthys olivaceus). In the dose response study, the maximum expression of the lacZ gene was found in the group injected with 5 ${\mu} g$ of the plasmid DNA. Kinetic study showed a significantly increased expression of $\beta-galactosidase$ gene at 7 days after injection. Effects of DNA vaccine on specific and nonspecific immune responses such as antibody and NO production were studied and the significant effect was found in olive flounder injected with 10 and 15 ${\mu} g$ DNA (sub optimal dose for lacZ gene expression). Two pro inflammatory cytokine genes, $IL-l\beta$ and $TNF-\alpha$, were also found to be up regulated in the muscle injected with the plasmid, suggesting an induction of local inflammatory response.

Deoxynivalenol- and zearalenone-contaminated feeds alter gene expression profiles in the livers of piglets

  • Reddy, Kondreddy Eswar;Jeong, Jin young;Lee, Yookyung;Lee, Hyun-Jeong;Kim, Min Seok;Kim, Dong-Wook;Jung, Hyun Jung;Choe, Changyong;Oh, Young Kyoon;Lee, Sung Dae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.4
    • /
    • pp.595-606
    • /
    • 2018
  • Objective: The Fusarium mycotoxins of deoxynivalenol (DON) and zerolenone (ZEN) cause health hazards for both humans and farm animals. Therefore, the main intention of this study was to reveal DON and ZEN effects on the mRNA expression of pro-inflammatory cytokines and other immune related genes in the liver of piglets. Methods: In the present study, 15 six-week-old piglets were randomly assigned to the following three different dietary treatments for 4 weeks: control diet, diet containing 8 mg DON/kg feed, and diet containing 0.8 mg ZEN/kg feed. After 4 weeks, liver samples were collected and sequenced using RNA-Seq to investigate the effects of the mycotoxins on genes and gene networks associated with the immune systems of the piglets. Results: Our analysis identified a total of 249 differentially expressed genes (DEGs), which included 99 upregulated and 150 downregulated genes in both the DON and ZEN dietary treatment groups. After biological pathway analysis, the DEGs were determined to be significantly enriched in gene ontology terms associated with many biological pathways, including immune response and cellular and metabolic processes. Consistent with inflammatory stimulation due to the mycotoxin-contaminated diet, the following Kyoto encyclopedia of genes and genomes pathways, which were related to disease and immune responses, were found to be enriched in the DEGs: allograft rejection pathway, cell adhesion molecules, graft-versus-host disease, autoimmune thyroid disease (AITD), type I diabetes mellitus, human T-cell leukemia lymphoma virus infection, and viral carcinogenesis. Genome-wide expression analysis revealed that DON and ZEN treatments downregulated the expression of the majority of the DEGs that were associated with inflammatory cytokines (interleukin 10 receptor, beta, chemokine [C-X-C motif] ligand 9), proliferation (insulin-like growth factor 1, major facilitator superfamily domain containing 2A, insulin-like growth factor binding protein 2, lipase G, and salt inducible kinase 1), and other immune response networks (paired immunoglobulin-like type 2 receptor beta, Src-like-adaptor-1 [SLA1], SLA3, SLA5, SLA7, claudin 4, nicotinamide N-methyltransferase, thyrotropin-releasing hormone degrading enzyme, ubiquitin D, histone $H_2B$ type 1, and serum amyloid A). Conclusion: In summary, our results demonstrated that high concentrations DON and ZEN disrupt immune-related processes in the liver.

L1 Cell Adhesion Molecule Suppresses Macrophage-mediated Inflammatory Responses (L1 Cell Adhesion Molecule에 의한 대식세포 매개 염증반응의 억제 기전 분석)

  • Yi, Young-Su
    • YAKHAK HOEJI
    • /
    • v.60 no.3
    • /
    • pp.128-134
    • /
    • 2016
  • L1 cell adhesion molecule (L1CAM) is a cell surface molecule to initiate a variety of cellular responses through interacting with other cell adhesion molecules in a homophilic or heterophilic manner. Although its expression was found to be upregulated in some tumor cells, including cholangiocarcinomas, and ovarian cancers, and many studies have investigated the role of L1CAM in these cancers, its role in inflammatory responses has been poorly understood. In this study, we explored the role of L1CAM in macrophage-mediated inflammatory responses. L1CAM significantly suppressed the production of nitric oxide (NO), but induced cell proliferation in RAW264.7 cells. L1CAM expression was detectable, but its expression was markedly decreased by lipopolysaccharide (LPS) in RAW264.7 cells. In addition, the expression of pro-inflammatory genes, such as tumor necrosis factor (TNF)-${\alpha}$, cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS) induced by LPS was dramatically suppressed by L1CAM in RAW264.7 cells. L1CAM inhibited the transcriptional activities of NF-${\kappa}B$ and AP-1 while its cytoplasmic domain deletion form, $L1{\Delta}CD$ did not suppressed their activities in RAW264.7 cells. Moreover, L1CAM suppressed nuclear translocation of p65 and p50 as well as c-Jun, c-Fos and p-ATF2 which are transcription factors of NF-${\kappa}B$ and AP-1, respectively. In conclusion, L1CAM suppressed inflammatory responses in macrophages through inhibiting NF-${\kappa}B$ and AP-1 pathways.