• Title/Summary/Keyword: exposure pipe

Search Result 50, Processing Time 0.028 seconds

A study on characteristics and internal exposure evaluation of radioactive aerosols during pipe cutting in decommissioning of nuclear power plant

  • Kim, Sun Il;Lee, Hak Yun;Song, Jong Soon
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1088-1098
    • /
    • 2018
  • Kori unit #1, which is the first commercial nuclear power plant in Korea, was permanently shutdown in June 2017, and it is about to be decommissioned. Currently in Korea, researches on the decommissioning technology are actively conducted, but there are few researches on workers internal exposure to radioactive aerosol that is generated in the process of decommissioning nuclear power plants. As a result, the over-exposure of decommissioning workers is feared, and the optimal working time needs to be revised in consideration of radioactive aerosol. This study investigated the annual exposure limits of various countries, which can be used as an indicator in evaluating workers' internal exposure to radioactive aerosol during pipe cutting in the process of decommissioning nuclear power plants, and the growth and dynamics of aerosol. Also, to evaluate it, the authors compared/analyzed the cases of aerosol generated when activated pipes are cut in the process of nuclear power plants and the codes for evaluating internal exposure. The evaluation codes and analyzed data conform to ALARA, and they are believed to be used as an important indicator in deriving an optimal working time that does not excess the annual exposure limit.

Research for KGS FS551 Amendment Using Abroad Code and Structure Simulation (해외규격과 구조해석을 이용한 KGS FS551 개정안 연구)

  • Kang, Byung-Ik;Kim, Byung-Gi;Kim, Byung-Duk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.9
    • /
    • pp.7-16
    • /
    • 2019
  • According to KGS FS551, the safety of an exposure pipe system should be calculated quantitatively by calculating the stress of exposed piping for thermal expansion. However, many pipe system designs and installation sites are not equipped for this. Therefore, KGS FS551 suggested the use of safe gas by presenting the recommended pipe shape. The shapes of various pipe systems have been derived. However, the recommended shape could not be an absolute evaluation standard. Furthermore, the ongoing debate over standards between a plumbing installer and an inspector is an obstacle to the efficient and safe use of gas. Therefore, the correct pipe system evaluation method is examined in this study, and the safety of the existing exposed pipe system is verified.

Mechanical Property Behaviors of Polyethylene Pipe due to Thermal-Degradation (열화시간에 따른 폴리에틸렌 파이프의 기계적 물성 거동)

  • Weon, Jong-Il;Choi, Kil-Yeong
    • Polymer(Korea)
    • /
    • v.33 no.5
    • /
    • pp.446-451
    • /
    • 2009
  • Reliability evaluations of linear low density polyethylene (LLDPE) pipe with respect of thermal exposure time have been investigated in accordance with RS M 0042, which is a reliability standard for polymer pipe. As the thermal exposure time is prolonged, a progressive increase, until 250 days, in tensile strength and a slight increase in hardness are observed, while a proportional decrease in elongation at break is showed. These results can be explained by the increase of crystallinity, followed by the increase of crosslinking density, chain scission and the decrease in chain mobility, due to thermal oxidation as the exposure time increases. Long term hydrostatic pressure test result implies the existence of transition point from ductile to brittle fracture. Oxidation induction time (OIT) test is employed to monitor the thermo-oxidative degradation of LLDPE pipe. This result shows that after the exposure time is 250 days, the depletion of antioxidants added in LLDPE pipe occurs. An empirical equation as function of exposure time, under $100^{\circ}C$ thermal-degradation condition, is proposed to assess the remaining amount of antioxidants owing to thermo-oxidative degradation. Fourier transform infrared spectroscopy results show the increase of carbonyl (-C=O) and hydroxyl (O-H) function groups on the surface of thermally exposed LLDPE pipe. This result suggests that the hydrocarbon groups locally undergo the oxidation on the LLDPE surface due to thermal-degradation.

Research for Detailed Technical Standards of Exposure Pipe (노출배관의 세부 기술기준 연구)

  • Kang, Byung-IK;Park, Woo-Il;Yim, Sang-Sik;Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.3
    • /
    • pp.13-19
    • /
    • 2018
  • The exposed pipe requires higher durability because is directly contacted with the outside air unlike the buried pipe. For this purpose, clear detailed technical standards are essential in the design and construction of piping systems. However, the existing technical standards were not able to evaluate the durability considering the characteristics of piping, so many questions were raised in the field. Therefore, through the present study, the existing detailed technical standards are revised to propose measures to secure the durability of exposed piping.

Influence of Pipe Materials and VBNC Cells on Culturable Bacteria in a Chlorinated Drinking Water Model System

  • Lee, Dong-Geun;Park, Seong-Joo;Kim, Sang-Jong
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.9
    • /
    • pp.1558-1562
    • /
    • 2007
  • To elucidate the influence of pipe materials on the VBNC (viable but nonculturable) state and bacterial numbers in drinking water, biofilm and effluent from stainless steel, galvanized iron, and polyvinyl chloride pipe wafers were analyzed. Although no HPC (heterotrophic plate count) was detected in the chlorinated influent of the model system, a DVC (direct viable count) still existed in the range between 3- and 4-log cells/ml. Significantly high numbers of HPC and DVC were found both in biofilm and in the effluent of the model system. The pipe material, exposure time, and the season were all relevant to the concentrations of VBNC and HPC bacteria detected. These findings indicate the importance of determining the number of VBNC cells and the type of pipe materials to estimate the HPC concentration in water distribution systems and thus the need of determining a DVC in evaluating disinfection efficiency.

Derivation of External Exposure Characteristics of Industrial Radiography Based on Empirical Evidence

  • Cho, Junik;Kim, Euidam;Kwon, Tae-Eun;Chung, Yoonsun
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.2
    • /
    • pp.93-98
    • /
    • 2022
  • Background: This study aims to derive the characteristics of each work type for industrial radiography based on empirical evidence through expert advice and a survey of radiation workers of various types of industrial radiography. Materials and Methods: According to a Korean report, work types of industrial radiography are classified into indoor tests, underground pipe tests, tests in a shielded room (radiographic testing [RT] room test), outdoor field tests, and outdoor large structure tests. For each work type, exposure geometry and radiation sources were mainly identified through the expert advice and workers' survey as reliable empirical evidence. Results and Discussion: The expert advice and survey results were consistent as the proportion of the work types were high in the order of RT room test, outdoor large structure test, underground pipe test, outdoor field test, and indoor test. The outdoor large structure test is the highest exposure risk work type in the industrial radiography. In most types of industrial radiography, radiation workers generally used 192Ir as the main source. In the results of the survey, the portion of sources was high in the order of 192Ir, X-ray generator, 60Co, and 75Se. As the exposure geometry, the antero-posterior geometry is dominant, and the rotational and isotropic geometry should be also considered with the work type. Conclusion: In this study, through expert advice and a survey, the external exposure characteristics for each work type of industrial radiography workers were derived. This information will be used in the reconstruction of organ dose for health effects assessment of Korean radiation workers.

Durability of Various Anti-Corrosive Organic Coatings in Marine Environment for Twelve Years

  • Yamamoto, Mashiro;Kajiki, Toshitaka;Kamon, Toshikuni;Yoshida, Kotaro
    • Corrosion Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.20-25
    • /
    • 2004
  • In order to clarify the durability of protective coatings for maritime steel structures, various anti-corrosive organic coated steel samples were exposed for twelve years in semitropical marine environment at Miyakojima Island, Okinawa, JAPAN. Samples were various organic coated steel pipes, 4.0 m in length and 150 mm in diameter. While the bare steel pipe entirely corroded in 4.5 mm thickness in four and half years, these organic coated steel pipes exhibited protective appearances after twelve-year-exposure except for the defect in the coatings. Polyethylene (PE) lining pipe exhibited a good protective performance. Urethane painted pipe was also good but some barnacles stuck to its surface. A combination of petrolatum tape and FRP cover showed sufficient corrosion resistance for steel surface. The correlation in results between exposure and laboratory acceleration test was examined. It was found that salt spray test (SST) results corresponded to rusted area of scratched portion and that adhesion change of coating layer corresponded to the rotating immersion test result. Among the on-site measured data, volume resistivity is utilized for the index of corrosion protection performance of organic coating.

Community characteristics of early biofilms formed on water distribution pipe materials (수도관 재질에 형성된 초기 생물막 형성 미생물의 군집 특성)

  • Kim, Yeong-Kwan;Park, Sung-Gu;Lee, Dong-Hun;Choi, Sung-Chan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.767-777
    • /
    • 2012
  • Annular Biofilm Reactor (ABR) equipped with coupons of three different pipe materials (STS 304, PVC, PE) was used to generate drinking water biofilm samples. The level of assimilable organic carbon (AOC) during the sample generation period was $37.3{\mu}g/L$, and this level did not seem to be low enough to limit the formation of biofilm in this study. Terminal-restriction fragment length polymorphism (T-RFLP) analyses determined T-RF profile as early as 3 h of exposure on PVC coupons. Average surface roughness ($R_a$) measured by atomic force microscopic analyses was 125.7 nm for PVC, and this value was higher than for STS (71.6 nm) and PE (74.0 nm). However, biofilm formation was faster on STS (6 h) than on PE (12 h), which indicated that surface roughness might not be the only factor that controlled the initiation of biofilm development. Upon detection of the T-RF peaks, richness (S) and diversity indices such as Shannon (H) and Simpson (1/D) demonstrated a rather slow increase until 48 h followed by rapid increase regardless of the pipe materials. Differences of microbial community structures among the biofilm samples were determined based on the cluster analysis using Jaccard coefficients (Sj). Biofilm communities could be divided into two distinct groups according to the exposure time regardless of the pipe materials. First group contained a young (< 48 h) biofilm samples (10 out of 11) but second group contained a mature (${\geq}$ 48 h) samples (11 out of 14). Results suggested that, due to the complexity of biofilm, the targeting of the first group of cluster was crucial for optimizing the management of drinking water distribution systems and controlling microbial growth.

Development of a Guided Wave Technique for the Inspection of a Feeder Pipe in a Pressurized Heavy Water Reactor

  • Cheong, Yong-Moo;Lee, Dong-Hoon;Kim, Sang-Soo;Jung, Hyun-Kyu
    • Corrosion Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.108-113
    • /
    • 2005
  • One of the recent safety issues in the pressurized heavy water reactor (PHWR) is the cracking of the feeder pipe. Because of the limited accessibility to the cracked region and a high dose of radiation exposure, it is difficult to inspect all the pipes with the conventional ultrasonic method. In order to solve this problem, a long-range guided wave technique has been developed. A computer program to calculate the dispersion curves in the pipe was developed and the dispersion curves for the feeder pipes in PHWR plants were determined. Several longitudinal and/or flexural modes were selected from the review of the dispersion curves and an actual experiment has been carried out with the specific alignment of the piezoelectric ultrasonic transducers. They were confirmed as L(0,1)) and/or flexural modes(F(m,2)) by the short time Fourier transformation(STFT) and were sensitive to the circumferential cracks, but not to the axial cracks in the pipe. An electromagnetic acoustic transducers(EMAT) was designed and fabricated for the generation and reception of the torsional guided wave. The axial cracks were detected by a torsional mode(T(0,1)) generated by the EMAT.

Analysis of Propagation of Negative Pressure Wave Due to Leak Through Damaged Hole in High Pressure Piping System (고압 배관망에서 배관 손상에 의한 누출 및 관내 저압확장파의 전파 특성 해석)

  • Kim, Wang-Yeun;Ha, Jong-Man;Ha, Tae-Woong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.1
    • /
    • pp.26-32
    • /
    • 2008
  • The safe operation of high pressure pipe line systems is of significant importance. Leaks due to faulty operation from the pipelines can lead to considerable product losses and to exposure of community to dangerous gases. There are several leak detection methods of pipeline network which have recently been suggested. The negative pressure wave detection technology, which has advantages of short time detection availability, accurate leaking location estimate capability and cost effective, is concentrated in this study. Theoretical analysis of the flow characteristics for leaking through a hole on the pipe wall has been performed by using Fluent 6.3, commercial CFD package. The results of 3-dimensional analysis near leaking hole confirm the occurrence of negative pressure wave, and the results of 2-dimensional analysis verify the characteristics of propagation of the wave which travels with speed equal to the speed of sound in the pipeline contents. Characteristics of leakage and pressure in a pipe with a hole have been analyzed for the various pipe and hole sizes.