• 제목/요약/키워드: explosive gases classification

검색결과 8건 처리시간 0.021초

마이크로 센서 어레이 제작 및 폭발성 가스 인식으로의 응용 (Micro Sensor Away and its Application to Recognizing Explosive Gases)

  • 이대식;이덕동
    • 대한전자공학회논문지SD
    • /
    • 제40권1호
    • /
    • pp.11-19
    • /
    • 2003
  • 폭발성 가스의 증류 및 그 양을 검지하기 위한 4 개의 개별 센서가 한 마이크로 열판 위에 집적된 센서어레이를 개발했다. 이 센서어레이는 각종 가스에 대해 다양한 감도 패턴을 가지며, SnO2를 모물질로 하는 4 개의 산화물 반도체 마이크로 가스센서로 구성하였다. 다공질에 큰 비표면적을 가진 모물질에 서로 다른 촉매를 첨가하여 감지물질을 제작함으로써 저농도에 대한 감도 및 재현성을 높였고, 센서어레이 전반에서 균일한 온도 분포가 되도록 설계하였다. 마이크로 열판은 N/O/N 박막을 가진 실리콘 기관을 이용하여, 열적 고립을 위해 Al 본딩 와이어로 공기중에 부유되어 있고, CMP 공정으로 두께를 제어하여 소모 전력을 조절하였다. 400℃에서 동작하는 센서어레이로부터 얻은 감도를 이용하여 주성분 분석 기법을 통해 폭발 하한값의 범위에서 부탄, 프로판, LPG, 그리고 일산화탄소 등과 같은 폭발성 빛 유독성 가스의 증류 및 양을 신뢰성 있게 식별할 수 있었다.

신경회로망을 이용한 폭발성 가스 인식 시스템 (An explosive gas recognition system using neural networks)

  • 반상우;조준기;이민호;이대식;정호용;허증수;이덕동
    • 센서학회지
    • /
    • 제8권6호
    • /
    • pp.461-468
    • /
    • 1999
  • 다중 센서 어레이와 신경회로망을 이용하여 메탄, 프로판, 부탄 등의 폭발성 가스의 종류 및 농도를 실시간으로 분석하고, 인식하여 결과를 실시간으로 출력할 수 있는 가스 인식 시스템을 구현하였다. 정유 공장이나 도시가스 배관 등에 비교적 많이 분포하는 폭발성 가스인 메탄, 프로판, 부탄 등의 가스들을 분류하고, 그 농도를 인식할 수 있는 시스템의 구현을 위해, 우선 9개의 후막형 반도체식 가스 센서로 구성된 가스 센서 어레이로부터 얻어지는 다차원 신호를 Principal Component Analysis(PCA)를 이용하여 그 특성을 분석하였다. 분석 결과를 바탕으로 오차역전파 학습 알고리즘을 갖는 다층 구조 신경회로망을 이용하여 가스 종류 및 농도를 정확하게 인식할 수 있는 가스 인식 시스템을 구현하였으며, 실시간 처리 시스템을 위해 TMS320C31 DSP 보드를 이용하여 가스인식 시스템을 구현하였다.

  • PDF

열매체 가열기 설비에서의 폭발위험관리에 관한 연구 (A Study on Explosion Risk Management for Hot Oil Heater)

  • 장철;권진욱;황명환
    • 대한안전경영과학회지
    • /
    • 제19권3호
    • /
    • pp.1-9
    • /
    • 2017
  • In the industrial field, various type of fuel have been used for product processing facilities. Recent for 10 years, the usage of natural gas (NG) was gradually increased. Because it has many merits; clean fuel, no transportation, storage facility and so on. There are common safety concept that strict explosion protection approaches are needed for facilities where explosive materials such as flammable liquid, vapor and gases exist. But some has an optimistic point of view that the lighter than air gases such as NG disperse rapidly, hence do not form explosion environment upon release into the atmosphere, many parts has a conventional safety point of view that those gases are also inflammable gases, hence can form explosion environment although the extent is limited and present. In this paper, the heating equipments (Hot Oil Heater) was reviewed and some risk management measures were proposed. These measures include hazardous area classification and explosion-proof provisions of electric apparatus, an early gas leak detection and isolation, ventilation system reliability, emergency response plan and training and so on. This study calculates Hazardous Area Classification using the hypothetical volume in the KS C IEC code.

가스 누출 실험, CFD 및 거리산출 비교를 통한 LP가스 누출 검지농도 분포에 대한 고찰 (A Comparison on Detected Concentrations of LPG Leakage Distribution through Actual Gas Release, CFD (FLACS) and Calculation of Hazardous Areas)

  • 김정환;이민경
    • 공업화학
    • /
    • 제32권1호
    • /
    • pp.102-109
    • /
    • 2021
  • Recently, an interest in risk calculation methods has been increasing in Korea due to the establishment of classification code for explosive hazardous area on gas facility (KGS CODE GC101), which is based on the international standard of classification of areas - explosive gas atmospheres (IEC 60079-10-1). However, experiments to check for leaks of combustible or toxic gases are very difficult. These experiments can lead to fire, explosion, and toxic poisoning. Therefore, even if someone tries to provide a laboratory for this experiment, it is difficult to install a gas leakage equipment. In this study we find out differences among actual experiments, CFD by using FLACS and calculation based on classification code for explosive hazardous area on gas facility (KGS CODE GC101) by comparing to each other. We develpoed KGS HAC (hazardous area classification) program which based on KGS GC101 for convenience and popularization. As a result, actual gas leak, CFD and KGS HAC are showing slightly different results. The results of dispersion of 1.8 to 2.7 m were shown in the actual experiment, and the CFD and KGS HAC showed a linear increase of about 0.4 to 1 m depending on the increase in a flow rate. In the actual experiment, the application of 3/8" tubes and orifice to take into account the momentum drop resulted in an increase in the hazardous distance of about 1.95 m. Comparing three methods was able to identify similarities between real and CFD, and also similarities and limitations of CFD and KGS HAC. We hope these results will provide a good basis for future experiments and risk calculations.

Electrical Machines and Drives for Potentially Explosive Atmospheres

  • Grantham, Colin
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권1호
    • /
    • pp.128-134
    • /
    • 2012
  • This paper gives an overview of the requirements for electrical equipment in potentially explosive atmospheres and describes how these are applied to electrical machines and drives in hazardous areas. The method by which equipment can be shown to be safe in a whole range of gases, by testing in a single test gas, is covered. It is shown how the more recently introduced methods of protection for hazardous areas, increased safety and nonsparking, are ideally suited to AC machines and drives. A novel method of measuring the fullload temperature rise of electrical machines for hazardous, and other areas, without the need to connect a mechanical load to the machine's drive shaft is explained.

LNG를 사용하는 설비에서의 폭발위험장소 적용 및 구분에 대한 제도/기술적 접근방안 (Technical/Systemic Approach to Safety Assesment of Thermoprocessing Equipment Consuming LNG for Classification of Hazardous Area)

  • 최상원
    • 한국안전학회지
    • /
    • 제26권5호
    • /
    • pp.33-40
    • /
    • 2011
  • In the hazardous areas where explosive liquids, vapors and gases exist, electrical apparatus/equipment should have explosion-proof construction. The consuming of liquefied natural gas(LNG) has markedly increased in the industrial field, especially in aspect of some thermoprocessing equipment, boiler, dryer, furnace, annealer, kiln, regenerative thermal oxidizer(RTO) and so on. Because it has many merits, clean fuel, safety, no transportation/storage facility and so on. It is strongly recommend that the classification of hazards has to be decided to prevent and protect explosion which may occur in thermoprocessing equipment. In this paper, the operated thermoprocessing equipments in industrial area investigated and explosion risk assessment about LNG leakage from its facilities was performed through numerical calculation and computer simulation. Finally, we suggest the systemic/technical approach for safety assessments of thermoprocessing equipments consumed LNG fuel which are specially subjected to classification of hazardous area.

비점화(非點火)(Non-Incendive)형(型) 방폭(防爆) 전기기기(電氣機器)의 구조특성(構造特性) 및 평가방법(評價方法) (Constructional Properties and Evaluation Methods of the Non-Incendive Type of Explosion-Proof Electrical Apparatus)

  • 최상원;이관형;문정기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 A
    • /
    • pp.110-113
    • /
    • 1994
  • In the hazardous areas where explosive substances in the form of gases, vapor or mists exist, electrical apparatus and installations must be of explosion-proof construction to prevent or limit the danger of the ignition of potentially explosive atmosphere. In Korea, six types of protection have been specified in the government regulations at present: flameproof enclosure, pressurization, oil immersion, increased safety, intrinsic safety, and special types. If electrical apparatus are made of explosion-proof construction in a way other than five above-mentioned types, and their performance is tested and approved by the reponsible authorities, they may be categorized as special type apparatus. In this paper, we introduced a special type of explosion-proof electrical apparatus, called non-incendive type, and presented its constructional requirements. We also investigated evaluation methods of non-incendive type apparatus to assure the explosion-proof performance, and proposed a new classification method of hazardous areas using probabilistic concept.

  • PDF

Specific Process Conditions for Non-Hazardous Classification of Hydrogen Handling Facilities

  • Choi, Jae-Young;Byeon, Sang-Hoon
    • Safety and Health at Work
    • /
    • 제12권3호
    • /
    • pp.416-420
    • /
    • 2021
  • Hazardous area classification design is required to reduce the explosion risk in process plants. Among the international design guidelines, only IEC 60079-10-1 proposes a new type of zone, namely zone 2 NE, to prevent explosion hazards. We studied how to meet the zone 2 NE grade for a facility handling hydrogen gas, which is considered as most dangerous among explosive gases. Zone 2 NE can be achieved considering the grade of release, as well as the availability and effectiveness of ventilation, which are factors indicative of the facility condition and its surroundings. In the present study, we demonstrate that zone 2 NE can be achieved when the degree of ventilation is high by accessing temperature, pressure, and size of leak hole. The release characteristic can be derived by substituting the process condition of the hydrogen gas facility. The equations are summarized considering relation of the operating temperature, operating pressure, and size of leak hole. Through this relationship, the non-hazardous condition can be realized from the perspective of inherent safety by the combination of each parameter before the initial design of the hydrogen gas facility.