• Title/Summary/Keyword: explosion damage

Search Result 323, Processing Time 0.028 seconds

A study on the characteristics of gas explosion with vent area (밀폐공간에서 파열면에 따른 가스폭발특성에 관한 연구)

  • Kim Sang Sub;Chae Jae Ou;Jo Young Do;Jang Gi Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.4 s.21
    • /
    • pp.53-60
    • /
    • 2003
  • Accident occurred by gas explosion in house or building causes damage on lives and properties. To avoid secondary damage, this study drew area ratio of vent area with the experiment for pressure variation with vent area versus building volume by selection of model for different size and shapes of vent area generated by explosion. In addition, Appropriate model was chosen to predict the damage by minimum pressure with the experiment of opening are shapes. This model can prevent secondary damage with the selected vent area and shape to guarantee building safety.

  • PDF

A Study on Estimation of Human Damage for Overpressure by Vapor Cloud Explosion in Enclosure Using Probit Model (프로빗모델을 통한 밀폐공간에서의 증기운폭발 과압에 의한 인체피해예측)

  • Leem, Sa-Hwan;Lee, Jong-Rark;Huh, Yong-Jeong
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.1
    • /
    • pp.42-47
    • /
    • 2008
  • The demand of gas as an eco-friendly energy source has being increased. With the demand of gas, the use of gas is also increased, so injury and loss of life by the explosion and fire have been increasing every year. Hence the influence on over-pressure caused by Vapor Cloud Explosion in enclosure of experimental booth was calculated by using the Hopkinson's scaling law and damage effect by the accident to a human body was estimated by applying the probit model. As a result of the damage estimation conducted by using the probit model, both the damage possibility of explosion overpressure to human over 3 meters away and that of overpressure to tympanum rupture over 25 meters away from the explosion shows nothing.

  • PDF

A Study on Estimation of Noise Damage caused by Rupture of Butane-can(volume : 34g)

  • Leem, Sa-Hwan;Huh, Yong-Jeong;Choi, Seong-Joo;Lee, Jong-Rark;Lim, Dong-Yeon
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.1 s.34
    • /
    • pp.13-17
    • /
    • 2007
  • It is very insecure to treat a butane can for cooking out of door. The human injury from the accidents of butane cans has been getting increased 1.5 times yearly since 2003. In this context, the Institute of Gas Technology Training in Korea Gas Safety Corporation carries out explosion experiment to make trainees to take all possible measures to ensure safe management of gas in the field by fully recognizing the hazards of gas explosion accidents. This study intends to examine the influence of such explosion experiments on the trainees witnessing nearby. The GEN exposed to the active students participating in the experiment away from 25 meters from the explosion site was 57.94 dB and the GEN to the passive students not participating away from 50 meters was 51.92 dB. According to Weber-Fechner's law for the lower value than 65 dB which is the environmental standard, it is safe from the place 15 meter far from the explosion place. The environmental standard of offices is 50 dB, and it is lower than the environmental standard if the office is 65 meter far from the explosion place.

  • PDF

Impact Range Comparative Analysis of BLEVE by Gas Leakage According to LPG Main Components (LPG 주성분에 따른 누출 폭발 피해 영향범위 비교분석)

  • Soo-Hee Lim;Su-Yeon Son;Ha-Sung Kong
    • Journal of the Korea Safety Management & Science
    • /
    • v.26 no.3
    • /
    • pp.51-57
    • /
    • 2024
  • The purpose of this study is to compare and analyze the impact range of explosion damage due to gas leaks at LPG filling stations, focusing on propane and butane, which are components of vehicle LPG. The scenarios were designed based on the explosion incident at an LPG filling station in Gangwon-do, where an actual gas leak accident occurred, resulting in Scenario I and Scenario II. The ALOHA program, developed by the U.S. National Oceanic and Atmospheric Administration (NOAA), was used as the tool to analyze the impact range of the explosion damage for both substances. The results of the study indicated that, under identical conditions, propane had a wider impact range of damage than butane. This is presumed to be due to the greater explosion energy of propane, attributable to its physicochemical properties. Therefore, when preparing for LPG leak accidents, measures for propane need to be prioritized. As safety measures for propane, two suggestions were made to minimize human casualties. First, from a preventive perspective, it is suggested to educate workers about propane. Second, from the perspective of response measures and damage minimization, it is suggested to thoroughly prepare emergency evacuation and rescue plans, evacuation routes, designated shelters, and emergency response teams. This study compares and analyzes the impact range of radiative heat damage based on LPG components. However, hazardous accidents are critically influenced by the type of leaking substance, the form of the leak, and meteorological factors affecting the diffusion pattern of the substance. Therefore, for future research, it is proposed to model various leakage scenarios for the same substance to conduct a comprehensive risk assessment.

A Study on the Explosion Limit and Explosion Characteristics of Flammable Vapor (가연성증기의 폭발한계 및 폭발특성에 관한 연구)

  • 김영수;이민세;신창섭
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.2
    • /
    • pp.116-121
    • /
    • 1998
  • Various flammable vapors as energy source and raw material have been stored, transported in the industries, and accidental leakage of these vapors occurs occasionally. Without an appropriate protection system, flammable vapors can be ignited and serious damage results from them. To reduce the risk caused by explosion, we should know the explosion limit and explosion characteristics. In this study, the maximum explosion pressure, the maximum explosion pressure rise, the effect of temperature and mixing with other vapor were measured in a cylindrical vessel. Experimental results showed that maximum explosion pressure of flammable vapor was about 3.1~$4.2 kg/cm^2$ and it was reached 3.4 times faster than that at explosion limit. The lower explosion limit was coincided well with Le Chateilier's equation, however, upper explosion limit was not.

  • PDF

Experimental Analysis on the Criteria of the Explosion Damage for One-way RC Slabs (일방향 철근 콘크리트 슬래브의 폭발 피해 기준에 대한 실험적 분석)

  • Lee, Seung Jae;Park, Jong Yil;Lee, Young Hak;Kim, Hie Sik
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.6
    • /
    • pp.68-74
    • /
    • 2017
  • To predict the damage of Reinforced Concrete (RC) structures from mass explosion, Pressure-Impulse (P-I) curves representing the relationship between peak pressure and impulse based on damage criteria are essential. There are P-I curves developed by the U.S. DoD without detailed explanation regarding validation. In this study, full scale explosion tests were conducted measuring response of RC slab to modify and validate pre-existing P-I curves. Four same RC slabs were prepared, and placed at different distances, which are fixed to steel frame with concrete base. Scaled distances were selected to show different failure types using P-I curve based on Single Degree Of Freedom (SDOF) model. It was found that SDOF model can be used to evaluate and identify one-way RC slab damage with difference damage criteria.

A Study on the Damage of Fireball by the Butane-Can Explosion (부탄 캔 파열로 인한 화구의 피해에 관한 연구)

  • Leem, Sa-Hwan;Huh, Yong-Jeong
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.4
    • /
    • pp.110-116
    • /
    • 2007
  • There have been 3E problems of energy, economy and environment since the earth has its history. Especially, as the industrial society is highly developing, human need in daily life has also changed drastically. With the introduction of 40 hour working week system, more households enjoy picnics on weekends. More gas accidents take place on Saturdays and on Sundays than any other days of week. Consequently, this study tries to find out the influence of flame caused by the explosion of butane canister on the adjacent combustibles and people by simulating relevant quantity of TNT. In addition, the damage estimation was conducted by using API regulations. If the scale of the radiation heat is known by calculating the distance of flame influence from the explosion site, the damage from the site can be easily estimated. And the accident damage was estimated by applying the influence on the adjacent structures and people into the PROBIT model. According to the pro bit analyze, the spot which is 50cm away from the flame has 97% of the damage probability by the first-degree burn, 8% of the damage probability by the second-degree burn and 4% of the death probability by the fire.

A Study on the Damage of Flame caused by the Vapor Cloud Explosion in LPG Filling Station (LPG충전소에서 증기운폭발에 의한 화염의 피해에 관한 연구)

  • Leem, Sa-Hwan;Huh, Yong-Jeong
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.53-60
    • /
    • 2010
  • LPG(Liquefied Petroleum Gas) vehicles in metropolitan area are being applied to improve air quality and have been proven effective for the reduction of air pollutant. In addition, LPG demand is growing rapidly as an environmentally friendly energy source and its gas station is also increasing every year. Consequently, this study tries to find out the influence of flame caused by the VCE(Vapor Cloud Explosion) in filling station on the adjacent combustibles and people by simulating relevant quantity of TNT. In addition, the damage estimation was conducted by using API regulations. If the scale of the radiation heat is known by calculating the distance of flame influence from the explosion site, the damage from the site can be easily estimated. And the accident damage was estimated by applying the influence on the adjacent structures and people into the PROBIT model. According to the probit analyze, the spot which is 30m away from the flame has 100% of the damage probability by the first-degree burn, 99.2% of the damage probability by the second-degree burn and 93.4% of the death probability by the fire.

A Research on the Verification Test Procedure for Quantitative Explosion Risk Assessment and Management of Offshore Installations (해양플랜트 폭발사고 위험도 평가/관리를 위한 실증시험기법에 관한 연구)

  • Kim, Bong Ju;Ha, Yeon Chul;Seo, Jung Kwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.3
    • /
    • pp.215-221
    • /
    • 2018
  • The structural design of offshore installations against explosions has been required to protect vital areas (e.g. control room, worker's area etc.) and minimize the damage from explosion accidents. Because the explosion accident will not only result in significant casualties and economic losses, but also cause serious pollution and damage to surrounding environment and coastal marine ecosystems. Over the past two decades, an incredible efforts was made to develop reliable methods to reduce and manage the explosion risk. Among the methods Quantitative Risk Assessment and Management (QRA&M) is the one of cutting-edge technologies. The explosion risk can be quantitatively assessed by the product of explosion frequency based on probability calculation and consequence analyzed using computer simulations, namely Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA). However to obtain reliable consequence analysis results by CFD and FEA, uncertainties associate with modeling and simulation are needed to be identified and validated by comparison with experimental data. Therefore, large-scaled explosion test procedure is developed in this study. And developed test procedure can be helpful to obtain precious test data for the validation of consequence analysis using computer simulations, and subsequently allow better assessment and management of explosion risks.

A Study on Estimation of Overpressure Damage Caused by Rupture of Butane Can (volume : 34 g) (부탄 캔(용량 : 34 g)파열로 인한 과압의 피해예측에 관한 연구)

  • Leem Sa Hwan;Choi Ic Whoan;Lim Dong Yeon
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.2 s.27
    • /
    • pp.8-15
    • /
    • 2005
  • With the introduction of 40 hour working week system, more households enjoy picnics on weekends. More gas accidents take place on Saturdays and on Sundays than any other days of week. As of October, 2004 casualties resulted from butane can accidents increased 1.5 times compared to the same period of the previous year. In this study, the influence of explosion over-pressure caused by the rupture of butane can thrown away after use was calculated by using the Hopkinson's Scaling Law and the accident damage was estimated by applying the influence on the adjacent structures and people into the Probit model. As a result of the damage estimation conducted by using the Probit model, both the damage possibility of explosion over-pressure to structures 50 meters away and that of over-pressure to people 10 meters away showed nothing. The explosion efficiency used was 100 percent. As a result of this, the actual damage influenced by the rupture of butane can would be lower than the value calculated in this study and expected to be safer.

  • PDF