• 제목/요약/키워드: explosion cycle

검색결과 36건 처리시간 0.028초

침엽수 원판(圓板)의 투과성 증진을 위한 저압증기폭쇄(低壓蒸氣爆碎)처리 효과 (The Effect of Law Pressure Steam Explosion Treatment on the Improvement of Permeability in the Softwood Disks)

  • 이남호;하야시 카즈오
    • Journal of the Korean Wood Science and Technology
    • /
    • 제25권3호
    • /
    • pp.37-42
    • /
    • 1997
  • This study was carried out to track the heated-air flows within the tree disk through measuring the distribution of wood temperatures during explosing the 7.5mm-thick Japanese cedar disk and to investigate the effects of the time for the first explosion cycle and the number of explosion cycles on the improvement of permeability of tree disk. If the tree disk are explosed when the temperatures of the shell and core of it are not equilibrium yet, all of the inflated airs in the shell after explosion don't flow out toward the autoclave and some of them flow into the core of which the air pressures are lower than those of the shell. It is very effective for the improvement of permeability of tree disk to make the first explosion cycle when the temperatures of the shell and the core equilibrate at the setting temperature of steam in the autoclave. The more tree disks were explosed under the same conditions of first explosion, the more their permeabilities were improved.

  • PDF

Synthesis of TiCx Powder via the Underwater Explosion of an Explosive

  • Tanaka, Shigeru;Bataev, Ivan;Hamashima, Hideki;Tsurui, Akihiko;Hokamoto, Kazuyuki
    • Metals and materials international
    • /
    • 제24권6호
    • /
    • pp.1327-1332
    • /
    • 2018
  • In this study, a novel approach to the explosive synthesis of titanium carbide (TiC) is discussed. Nonstoichiometric $TiC_x$ powder was produced via the underwater explosion of a Ti powder encapsulated within a spherical explosive charge. The explosion process, bubble formation, and synthesis process were visualized using high-speed camera imaging. It was concluded that synthesis occurred within the detonation gas during the first expansion/contraction cycle of the bubble, which was accompanied by a strong emission of light. The recovered powders were studied using scanning electron microscopy and X-ray diffraction. Submicron particles were generated during the explosion. An increase in the carbon content of the starting powder resulted in an increase in the carbon content of the final product. No oxide byproducts were observed within the recovered powders.

Fault Tree Analysis(FTA)에 의한 Toluene저장 Tank의 폭발해석 (The Evaluation of Explosion For Toluene Storage Tank by Computer-Aided Fault Tree Analysis)

  • 정재희;이영섭
    • 한국안전학회지
    • /
    • 제3권2호
    • /
    • pp.5-16
    • /
    • 1988
  • This study is conducted to evaluate the explosion of tolune storage tank in the petrochemical plant by Fault Tree Analysis. The conclusions are as follows; 1) Fault Tree diagram and the required computer program for evaluation of explosion accident is developed. 2) The probability of the top event, explosion accident, is $1.5\;{\times}\;10^{-8}$ per year, so there is almost no possibility of explosion during the life cycle of tank. However, the probability of Gate 6 and Gate 7 is 8.8 per month, therefore, attention should be paid to them for accident prevention. 3) The number of minimal cut sets is 67 sets which are not calculated the probability of each set, because of the lack of computer capacity. All the minimal cut sets should be examined case by case. However, it is necessary to be paid attention to COM1, 126, 131, and COM4 in minimal cut sets, because the number of appearance is so high. 4) The number path sets is 70 sets which are not calculated the probability of each set, because of the lack of computer capacity. It is very useful to prepare safety checklist by using this minimal path sets. Also, the events which appear many times, 123, COM5, 139, 127 and 128, are very high in reliability.

  • PDF

복합화력발전소 내 수소연료 적용 시 누출 사고에 대한 피해영향범위 분석: 지역별 환경 특성 영향에 기반하여 (Consequence Analysis on the Leakage Accident of Hydrogen Fuel in a Combined Cycle Power Plant: Based on the Effect of Regional Environmental Features)

  • 박희경;이민철
    • 한국수소및신에너지학회논문집
    • /
    • 제34권6호
    • /
    • pp.698-711
    • /
    • 2023
  • Consequence analysis using an ALOHA program is conducted to calculate the accidental impact ranges in the cases of hydrogen leakage, explosion, and jet fire in a hydrogen fueled combined cycle power plant. To evaluate the effect of weather conditions and topographic features on the damage range, ALOHA is executed for the power plants located in the inland and coastal regions. The damage range of hydrogen leaked in coastal areas is wider than that of inland areas in all risk factors. The obtained results are expected to be used when designing safety system and establishing safety plans.

타임패트리 네트 UNFOLDING을 이용한 FMS의 스케줄링 분석 (A SCHEDULING ANALYSIS OF FMS USING TPN UNFOLDING)

  • 이종근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.205-205
    • /
    • 2000
  • In this paper, we are proposed an analysis method of the operation schedule in FMS using Time Petri Nets(TPN) unfolding. TPN's unfolding is one of the analysis methods after changed non-cyclic net from the concurrent net without to expand the state explosion. We are illustrated this proposed to analyze a schedule problem in Ratio-driven FMS modeling.

  • PDF

자주식 심토환경 개선기 개발(2) - 본체 제작 및 성능 평가 - (Development of Self-propelled Explosive Subsoiler (2) - Construction of Prototype and Performance Evaluation -)

  • 이동훈;박우풍;김상철;이규승
    • Journal of Biosystems Engineering
    • /
    • 제34권6호
    • /
    • pp.404-410
    • /
    • 2009
  • This study was carried out to develop a self-propelled type explosive subsoiler for improving the root zone soil conditions in orchard and other forest fields. Prototype was designed to be able to inject air and other soil improving material such as lime into soil at the same time, and thus improve the air permeability and drainage of orchard soils to promote the root growth of tree for high quality fruit production. Soil penetration device of explosive subsoiler is composed of air hammer, penetration rob and air injection nozzle. To support the soil penetration device of explosive subsoiler to penetrate vertically, modified Scott-Russel mechanism was used. Timing control device for simultaneous injection of soil improving material with air was attached to the out side wall of air cylinder and as the cylinder move, the soil improving material was injected into soil at the same time. Turning radius of prototype was 2.2-2.3 m with good mobility in sloped land. It took approximately 1 minute for lime injection system to reach the optimum pressure of 9.9 kg/$cm^2$, average 10-20 seconds were required to rupture soil with the depth of 50 cm and 2-3 seconds were required for explosion, so all in all about 1 minute and 20 seconds were required for one cycle of explosion. Maximum soil rupture depth and diameter were 50 cm and 3-4 m respectively depending on the soil type and soil moisture content. For final design of explosive subsoiler inclination angle of lime hopper was increased from 60 degree to 70 degree and the shape of hopper was changed from rectangular cone to circular cone to solve the clogging problem of lime at out let. Agitating system operated by compressed air was attached to the metering device of the prototype, thus more than 90 cc of lime was discharged per cycle from metering device without clogging problems.

복합발전플랜트 내의 가스 화재 거동에 관한 수치해석 (Numerical Study of Fire Behavior Induced by Gas Leakage in Combined Cycle Power Plant)

  • 박재용;성건혁;이용남;최진욱;김대중;이성혁;유홍선
    • 한국분무공학회지
    • /
    • 제20권2호
    • /
    • pp.107-113
    • /
    • 2015
  • To date, the demand for Combined Cycle Power Plant (CCPP) has been continuously increased to overcome the problem of air pollution and lack of energy. In particular, the underground CCPP is exposed to substantial fire and explosion risks induced by gas leakage. The present study conducted numerical simulations to examine the fire behavior and gas leakage characteristics for a restricted region including gas turbine and other components used in a typical CCPP system. The commercial code of FLUENT V.14 was used for simulation. From the results, it was found that flammable limit distribution of leakage gas affects fire behavior. Especially, the flame is propagated in an instant in restricted region with LNG gas. In addition, consequence analysis factors such as critical temperature and radiation heat flux are introduced. These results would be useful in making the safety guidelines for the underground CCPP.

상온형 나트륨/유황 이차전지 개발 동향 (Development of Room Temperature Na/S Secondary Batteries)

  • 유호석;김인수;박진수
    • 한국수소및신에너지학회논문집
    • /
    • 제27권6호
    • /
    • pp.753-763
    • /
    • 2016
  • High temperature sodium/sulfur battery(Na/S battery) has good electrochemical properties, but, the battery has some problems such as explosion and corrosion at al. because of using the liquid electrodes at high temperature and production of high corrosion. Room temperature sodium/sulfur batteries (NAS batteries) is developed to resolve of the battery problem. To recently, room temperature sodium/sulfur batteries has higher discharge capacity than its of lithium ion battery, however, cycle life of the battery is shorter. Because, the sulfur electrode and electrolyte have some problem such as polysulfide resolution in electrolyte and reaction of anode material and polysulfide. Cycle life of the battery is improved by decrease of polysulfide resolution in electrolyte and block of reaction between anode material and polysulfide. If room temperature sodium/sulfur batteries (NAS batteries) with low cost and high capacity improves cycle life, the batteries will be commercialized batteries for electric storage, electric vehicle, and mobile electric items.

최소방문 기록을 이용한 병행 시스템의 상태 공간 순회 기법 (State Space Exploration of Concurrent Systems with Minimal Visit History)

  • 이정선;최윤자;이우진
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권9호
    • /
    • pp.669-675
    • /
    • 2010
  • 이른 시스템 개발 단계에서 요구사항 에러를 찾기 위해서는 시스템의 행위가 정형 언어로 표현되어야 하고, 도달성 분석이나 싸이클 탐색과 같은 분석 기술로 분석해야 한다. 하지만 이 기술들은 시스템의 상태 공간 순회를 기반으로 하기 때문에 시스템이 복잡해지면 상태 폭발 문제가 발생할 수 있다. 즉, 순회를 위한 메모리와 수행 시간이 큰 상태 공간 때문에 기하 급수적으로 증가한다. 본 논문에서는 병행 시스템에서 이러한 문제가 나타나는 원인을 지적하고 순회에 필요한 메모리를 줄이기 위해서 병행적 상태 공간을 합성하지 않고 순회한다. 또한 수행 시간을 줄이기 위해서 방문 기록을 최소한으로 유지하는 새로운 기술을 제시한다. 마지막으로 이 기법이 효과적임을 실험 결과를 통해 보인다.

전기 폭팔법에 의한 Sn계 리튬이차전지용 음극 분말의 제조 및 전기 화학적 특성 (Synthesis and Electrochemical Properties of Sn-based Anode Materials for Lithium Ion Battery by Electrical Explosion Method)

  • 홍성현
    • 한국수소및신에너지학회논문집
    • /
    • 제22권4호
    • /
    • pp.504-511
    • /
    • 2011
  • Nano-sized Sn powder was prepared by pulsed wire evaporation method. The Sn powder and carbon black were charged in jar and ball milled. The milling time was varied with 10 min., 1h, 2h, and 4h, respectively. The milled powders were dried and the shape and size were observed by FE-SEM. Nano-sized Sn powders were plastic-deformed and agglomerated by impact force of balls and heat generated during the SPEX milling. The agglomerated Sn powder also consisted of many nano-sized particles. Initial discharge capacities of milled Sn electrode powders with carbon powder were milled for 10 min., 1h, 2h, and 4h were 787, 829, 827, and 816 mAh/g, respectively. After 5 cycle, discharge capacities of Sn electrode powders with carbon powder milled for 10 min., 1h, 2h, and 4h decreased as 271, 331, 351, and 287 mAh/g, respectively. Because Sn electrode powders milled for 2h constist of uniform and fine size, the cyclability of coin cell made of this powders is better than others.