• Title/Summary/Keyword: explore graphically and statistically

Search Result 3, Processing Time 0.02 seconds

Exploring Graphically and Statistically the Reliability of Medium Density Fiberboard

  • Guess, Frank M.;Edwards, David J.;Pickrell, Timothy M.;Young, Timothy M.
    • International Journal of Reliability and Applications
    • /
    • v.4 no.4
    • /
    • pp.157-170
    • /
    • 2003
  • In this paper we apply statistical reliability tools to manage and seek improvements in the strengths of medium density fiberboard (MDF). As a part of the MDF manufacturing process, the product undergoes destructive testing at various intervals to determine compliance with customer′s specifications. Workers perform these tests over sampled cross sections of the MDF panel to measure the internal bond (IB) in pounds per square inches until failure. We explore both graphically and statistically this "pressure-to-failure" of MDF. Also, we briefly comment on reducing sources of variability in the IB of MDF.

  • PDF

Using Reliability Tools to Characterize Wood Strand Thickness of Oriented Strand Board Panels

  • Chastain, J.S.;Young, T.M.;Guess, F.M.;Leo, R.V.
    • International Journal of Reliability and Applications
    • /
    • v.10 no.2
    • /
    • pp.89-99
    • /
    • 2009
  • Oriented Strand Board (OSB) is an important engineered wood product used in housing construction which has a lower environmental impact or "carbon footprint." In this paper, reliability and statistical tools are applied to gain insights on the strand thickness of OSB panels. An OSB panel consists of several hundred wood strands that are resinated and pressed. The variability of OSB strand thickness for six manufacturers in the Eastern United States is examined as a whole, as well as individually. Little research exists on OSB strand thickness across mills even though strand thickness variability has been documented in laboratory experiments to greatly influence the dimensional stability of OSB panels. Our aims are to quantify and characterize strand thickness, plus apply reliability techniques, such as Kaplan-Meier curves, to characterize the probability of strand thickness. We further explore graphically and statistically the thickness of the strands.

  • PDF

Exploring Reliability of Oriented Strand Board's Tensile and Stiffness Strengths

  • Wang, Y.;Young, T.M.;Guess, F.M.;Leon, R.V.
    • International Journal of Reliability and Applications
    • /
    • v.8 no.1
    • /
    • pp.111-124
    • /
    • 2007
  • In this paper, we apply insightful statistical reliability tools to manage and seek improvements in the strengths of Oriented Strand Board (OSB). As a part of the OSB manufacturing process, the product undergoes destructive testing at various intervals to determine compliance with customers' specifications. Workers perform these tests on sampled cross sections of the OSB panel to measure the tensile strength, also called internal bond (IB), in pounds per square inches until failure. Additional stiffness strength tests include parallel and perpendicular elasticity indices (EI), which are taken from cross sectional samples of the OSB panel in the parallel and perpendicular directions with respect to the orientation of the wood strands. We explore both graphically and statistically these "pressure-to-failures" of OSB. Also, we briefly comment on reducing sources of variability in the IB and EI of OSB.

  • PDF