• Title/Summary/Keyword: explicit equations

Search Result 292, Processing Time 0.019 seconds

Formulae for the frequency equations of beam-column system carrying a fluid storage tank

  • El-Sayed, Tamer. A.;Farghaly, Said. H.
    • Structural Engineering and Mechanics
    • /
    • v.73 no.1
    • /
    • pp.83-95
    • /
    • 2020
  • In this work, a mathematical model of beam-column system carrying a double eccentric end mass system is investigated, and solved analytically based on the exact solution analysis. The model considers the case in which the double eccentric end mass is a rigid storage tank containing fluid. Both Timoshenko and Bernoulli-Euler beam bending theories are considered. Equation of motion, general solution and boundary conditions for the present system model are developed and presented in dimensional and non-dimensional format. Several important non-dimensional design parameters are introduced. Symbolic and/or explicit formulae of the frequency and mode shape equations are formulated. To the authors knowledge, the present reduced closed form symbolic and explicit frequency equations have not appeared in literature. For different applications, the results are validated using commercial finite element package, namely ANSYS. The beam-column system investigated in this paper is significant for many engineering applications, especially, in mechanical and structural systems.

REALIZING A FAKE PROJECTIVE PLANE AS A DEGREE 25 SURFACE IN ℙ5

  • Lev Borisov;Zachary Lihn
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.4
    • /
    • pp.683-692
    • /
    • 2024
  • Fake projective planes are smooth complex surfaces of general type with Betti numbers equal to that of the usual projective plane. Recent explicit constructions of fake projective planes embed them via their bicanonical embedding in ℙ9. In this paper, we study Keum's fake projective plane (a = 7, p = 2, {7}, D327) and use the equations of [1] to construct an embedding of fake projective plane in ℙ5. We also simplify the 84 cubic equations defining the fake projective plane in ℙ9.

Scalar form of dynamic equations for a cluster of bodies

  • Vinogradov, Oleg
    • Structural Engineering and Mechanics
    • /
    • v.5 no.2
    • /
    • pp.209-220
    • /
    • 1997
  • The dynamic equations for an arbitrary cluster comprising rigid spheres or assemblies of spheres (subclusters) encountered in granular-type systems are considered. The system is treated within the framework of multibody dynamics. It is shown that for an arbitrary cluster topology the governing equations can be given in an explicit scalar from. The derivation is based on the D'Alembert principle, on inertial coordinate system for each body and direct utilization of the path matrix describing the topology. The scalar form of the equations is important in computer simulations of flow of granular-type materials. An illustrative example of a three-body system is given.

ON SOME MODULAR EQUATIONS OF DEGREE 5 AND THEIR APPLICATIONS

  • Paek, Dae Hyun;Yi, Jinhee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.1315-1328
    • /
    • 2013
  • We first derive several modular equations of degree 5 and present their concise proofs based on algebraic computations. We then establish explicit relations and formulas for some parameterizations for the theta functions ${\varphi}$ and ${\psi}$ by using the derived modular equations. In addition, we find specific values of the parameterizations and evaluate some numerical values of the Rogers-Ramanujan continued fraction.

ON SOME MODULAR EQUATIONS AND THEIR APPLICATIONS II

  • Paek, Dae Hyun;Yi, Jinhee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.1221-1233
    • /
    • 2013
  • We first derive some modular equations of degrees 3 and 9 and present their concise proofs based on algebraic computations. We then use these modular equations to establish explicit relations and formulas for the parameterizations for the theta functions ${\varphi}$ and ${\psi}$ In addition, we find specific values of the parameterizations to evaluate some numerical values of the cubic continued fraction.

NUMERICAL SIMULATIONS FOR THE CONTRACTION FLOW USING GRID GENERATION

  • Salem, S.A.
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.383-405
    • /
    • 2004
  • We study the incomprssible Navier Stokes equations for the flow inside contraction geometry. The governing equations are expressed in the vorticity-stream function formulations. A rectangular computational domain is arised by elliptic grid generation technique. The numerical solution is based on a technique of automatic numerical generation of acurvilinear coordinate system by transforming the governing equation into computational plane. The transformed equations are approximated using central differences and solved simultaneously by successive over relaxation iteration. The time dependent of the vorticity equation solved by using explicit marching procedure. We will apply the technique on several irregular-shapes.

NON-ITERATIVE DOMAIN DECOMPOSITION METHOD FOR THE CONVECTION-DIFFUSION EQUATIONS WITH NEUMANN BOUNDARY CONDITIONS

  • Younbae Jun
    • East Asian mathematical journal
    • /
    • v.40 no.1
    • /
    • pp.109-118
    • /
    • 2024
  • This paper proposes a numerical method based on domain decomposition to find approximate solutions for one-dimensional convection-diffusion equations with Neumann boundary conditions. First, the equations are transformed into convection-diffusion equations with Dirichlet conditions. Second, the author introduces the Prediction/Correction Domain Decomposition (PCDD) method and estimates errors for the interface prediction scheme, interior scheme, and correction scheme using known error estimations. Finally, the author compares the PCDD algorithm with the fully explicit scheme (FES) and the fully implicit scheme (FIS) using three examples. In comparison to FES and FIS, the proposed PCDD algorithm demonstrates good results.

A NOTE ON APPROXIMATION OF SOLUTIONS OF A K-POSITIVE DEFINITE OPERATOR EQUATIONS

  • Osilike, M.O.;Udomene, A.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.231-236
    • /
    • 2001
  • In this note we construct a sequence of Picard iterates suitable for the approximation of solutions of K-positive definite operator equations in arbitrary real Banach spaces. Explicit error estimate is obtained and convergence is shown to be as fast as a geometric progression.

  • PDF