• Title/Summary/Keyword: expert judgment

Search Result 74, Processing Time 0.019 seconds

Study on Application of Critiquing System As Corresponding Plan of Human Errors on Judgment Process (판단과정에 따른 인간 실수 대응을 위한 비판시스템의 적용방안에 관한 연구)

  • Yoon, Ho-Bin;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.1
    • /
    • pp.11-22
    • /
    • 2008
  • Humans are well-known for being adept at using intuition and expertise in many situations. However, human experts are still susceptible to errors in judgment or execution, and failure to recognize the limits of knowledge. This would happen especially in semi-structured situations, in multi-disciplinary settings, under time or other stress, under uncertainty, or when knowledge is outdated Human errors are caused by cognitive biases, attentional slips/memory lapses, cultural motivations, and missing knowledge. The purpose of this research is to study errors of human experts committed in judgment and the general idea of critiquing systems as corresponding plan. Compared to expert systems, critiquing systems are narrowly focused programs useful in limited situations for collaborating with and supporting experts in their task activities. It supports an expert by detecting the human's errors by deploying various strategies that stimulate humans to improve their performance. A variety of types of critiquing systems has spread through numerous application areas.

Implementation of Automated Motor Fault Diagnosis System Using GA-based Fuzzy Model (유전 알고리즘기반 퍼지 모델을 이용한 모터 고장 진단 자동화 시스템의 구현)

  • Park, Tae-Geun;Kwak, Ki-Seok;Yoon, Tae-Sung;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.24-26
    • /
    • 2005
  • At present, KS-1000 which is one of a commercial measurement instrument for motor fault diagnosis has been used in industrial field. The measurement system of KS-1000 is composed of three part : harmonic acquisition, signal processing by KS-1000 algorithm, diagnosis for motor fault. First of all, voltage signal taken from harmonic sensor is analysed for frequency by KS-1000 algorithm. Then, based on the result values of analysis skilled expert makes a judgment about whether motor system is the abnormality or degradation state. But the expert system such a motor fault diagnosis is very difficult to bring the expectable results by mathematical modeling due to the complexity of judgment process. In this reason, we propose an automation system using fuzzy model based on genetic algorithm(GA) that builded a qualitative model of a system without priori knowledge about a system provided numerical input output data.

  • PDF

On the Balanced Blending of Formally Structured and Simplified Approaches for Utilizing Judgments of Experts in the Assessment of Uncertain Issues

  • Ahn Kwang-Il;Yang Joon-Eon;Ha Jae-Joo
    • Nuclear Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.318-335
    • /
    • 2003
  • Expert judgment is frequently employed in the search for the solution to various engineering and decision-making problems where relevant data is not sufficient or where there is little consensus as to the correct models to apply. When expert judgments are required to solve the underlying problem, our main concern is how to formally derive their technical expertise and their personal degree of familiarity about the related questions. Formal methods for gathering judgments from experts and assessing the effects of the judgments on the results of the analysis have been developed in a variety of ways. The most important interest of such methods is to establish the robustness of an expert's knowledge upon which the elicitation of judgments is made and an effective trace of the elicitation process as possible as one can. While the resultant expert judgments can remain to a large extent substantiated with formal elicitation methods, their applicability however is often limited due to restriction of available resources (e.g., time, budget, and number of qualified experts, etc) as well as a scope of the analysis. For this reason, many engineering and decision-making problems have not always performed with a formal/structured pattern, but rather relied on a pertinent transition of the formal process to the simplified approach. The purpose of this paper is (a) to address some insights into the balanced use of formally structured and simplified approaches for the explicit use of expert judgments under resource constraints and (b) to discuss related decision-theoretic issues.

A Study on the Research Model for the Standardization of Software-Similarity-Appraisal Techniques (소프트웨어 복제도 감정기법의 표준화 모델에 관한 연구)

  • Bahng, Hyo-Keun;Cha, Tae-Own;Chung, Tai-Myoung
    • The KIPS Transactions:PartD
    • /
    • v.13D no.6 s.109
    • /
    • pp.823-832
    • /
    • 2006
  • The Purpose of Similarity(Reproduction) Degree Appraisal is to determine the equality or similarity between two programs and it is a system that presents the technical grounds of judgment which is necessary to support the resolution of software intellectual property rights through expert eyes. The most important things in proceeding software appraisal are not to make too much of expert's own subjective judgment and to acquire the accurate-appraisal results. However, up to now standard research and development for its systematic techniques are not properly made out and as different expert as each one could approach in a thousand different ways, even the techniques for software appraisal types have not exactly been presented yet. Moreover, in the analyzing results of all the appraisal cases finished before, through a practical way, we blow that there are some damages on objectivity and accuracy in some parts of the appraisal results owing to the problems of existing appraisal procedures and techniques or lack of expert's professional knowledge. In this paper we present the model for the standardization of software-similarity-appraisal techniques and objective-evaluation methods for decreasing a tolerance that could make different results according to each expert in the same-evaluation points. Especially, it analyzes and evaluates the techniques from various points of view concerning the standard appraisal process, setting a range of appraisal, setting appraisal domains and items in detail, based on unit processes, setting the weight of each object to be appraised, and the degree of logical and physical similarity, based on effective solutions to practical problems of existing appraisal techniques and their objective and quantitative standardization. Consequently, we believe that the model for the standardization of software-similarity-appraisal techniques will minimizes the possibility of mistakes due to an expert's subjective judgment as well as it will offer a tool for improving objectivity and reliability of the appraisal results.

Expert Opinion Elicitation Process Using a Fuzzy Probability

  • Yu, Donghan
    • Nuclear Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.25-34
    • /
    • 1997
  • This study presents a new approach for expert opinion elicitation process to assess an uncertainty inherent in accident management. The need to work with rare event and limited data in accident management leads analysis to use expert opinions extensively. Unlike the conventional approach using point-valued probabilities, the study proposes the concept of fuzzy probability to represent expert opinion. The use of fuzzy probability has an advantage over the conventional approach when an expert's judgment is used under limited dat3 and imprecise knowledge. The study demonstrates a method of combining and propagating fuzzy probabilities. finally, the proposed methodology is applied to the evaluation of the probability of a bottom head failure for the flooded case in the Peach Bottom BWR nuclear power plant.

  • PDF

Inter-expert Agreement and Diagnostic Accuracy of Sasang Constitution Medicine (사상체질 진단 연구의 전문가 일치도와 진단 정확률)

  • Han, Eunkyung;Kwon, Young Kyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.32 no.4
    • /
    • pp.185-196
    • /
    • 2018
  • The purpose of this study is to evaluate the current inter-expert agreement of Sasang Constitution Medicine (SCM), to expand the current knowledge on the causes of imperfect inter-expert agreement, and to explore possible solutions for improving inter-expert agreement. A literature search was conducted to gather data on the studies on diagnosis of SCM. The 127 articles included in this analysis had a mean 4.1 publications per year, 56.0% published in the Journal of Sasang Constitutional Medicine between the year of 1987 and 2017. SCM specialist participated in 96.3% of all the expert judgment cases. Inter-expert agreement was reported in 14.8% of the cases that had two or more experts. We recommend that expert panels integrate the results of current status of diagnostic consensus into guideline development and strengthen expert education and training with the aim of improving SCM diagnostic accuracy.

A Study on Development of Expert System for Collision Avoidance and Navigation(I): Basic Design

  • Jeong, Tae-Gwoen;Chen, Chao
    • Journal of Navigation and Port Research
    • /
    • v.32 no.7
    • /
    • pp.529-535
    • /
    • 2008
  • As a method to reduce collision accidents of ships at sea, this paper suggests an expert system for collision avoidance and navigation (hereafter "ESCAN"). The ESCAN is designed and developed by using the theory and technology of expert system and based on the information provided by AIS and RADAR/ARPA system. In this paper the ESCAN is composed of four(4) components; Facts/Data Base in charge of preserving data from navigational equipment, Knowledge Base storing production rules of the ESCAN, Inference Engine deciding which rules are satisfied by facts or objects, User System Interface for communication between users and ESCAN. The ESCAN has the function of real--time analysis and judgment of various encountering situations between own ship and targets, and is to provide navigators with appropriate plans of collision avoidance and additional advice and recommendation This paper, as a basic study, is to introduce the basic design and function of ESCAN.

IMPLEMENTATION OF DATA ASSIMILATION METHODOLOGY FOR PHYSICAL MODEL UNCERTAINTY EVALUATION USING POST-CHF EXPERIMENTAL DATA

  • Heo, Jaeseok;Lee, Seung-Wook;Kim, Kyung Doo
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.619-632
    • /
    • 2014
  • The Best Estimate Plus Uncertainty (BEPU) method has been widely used to evaluate the uncertainty of a best-estimate thermal hydraulic system code against a figure of merit. This uncertainty is typically evaluated based on the physical model's uncertainties determined by expert judgment. This paper introduces the application of data assimilation methodology to determine the uncertainty bands of the physical models, e.g., the mean value and standard deviation of the parameters, based upon the statistical approach rather than expert judgment. Data assimilation suggests a mathematical methodology for the best estimate bias and the uncertainties of the physical models which optimize the system response following the calibration of model parameters and responses. The mathematical approaches include deterministic and probabilistic methods of data assimilation to solve both linear and nonlinear problems with the a posteriori distribution of parameters derived based on Bayes' theorem. The inverse problem was solved analytically to obtain the mean value and standard deviation of the parameters assuming Gaussian distributions for the parameters and responses, and a sampling method was utilized to illustrate the non-Gaussian a posteriori distributions of parameters. SPACE is used to demonstrate the data assimilation method by determining the bias and the uncertainty bands of the physical models employing Bennett's heated tube test data and Becker's post critical heat flux experimental data. Based on the results of the data assimilation process, the major sources of the modeling uncertainties were identified for further model development.

An Improved Multilevel Fuzzy Comprehensive Evaluation to Analyse on Engineering Project Risk

  • LI, Xin;LI, Mufeng;HAN, Xia
    • The Journal of Economics, Marketing and Management
    • /
    • v.10 no.5
    • /
    • pp.1-6
    • /
    • 2022
  • Purpose: To overcome the question that depends too much on expert's subjective judgment in traditional risk identification, this paper structure the multilevel generalized fuzzy comprehensive evaluation mathematics model of the risk identification of project, to research the risk identification of the project. Research design, data and methodology: This paper constructs the multilevel generalized fuzzy comprehensive evaluation mathematics model. Through iterative algorithm of AHP analysis, make sure the important degree of the sub project in risk analysis, then combine expert's subjective judgment with objective quantitative analysis, and distinguish the risk through identification models. Meanwhile, the concrete method of multilevel generalized fuzzy comprehensive evaluation is probed. Using the index weights to analyse project risks is discussed in detail. Results: The improved fuzzy comprehensive evaluation algorithm is proposed in the paper, at first the method of fuzzy sets core is used to optimize the fuzzy relation matrix. It improves the capability of the algorithm. Then, the method of entropy weight is used to establish weight vectors. This makes the computation process fair and open. And thereby, the uncertainty of the evaluation result brought by the subjectivity can be avoided effectively and the evaluation result becomes more objective and more reasonable. Conclusions: In this paper, we use an improved fuzzy comprehensive evaluation method to evaluate a railroad engineering project risk. It can give a more reliable result for a reference of decision making.

Effects of Expert-Determined Reference Standards in Evaluating the Diagnostic Performance of a Deep Learning Model: A Malignant Lung Nodule Detection Task on Chest Radiographs

  • Jung Eun Huh; Jong Hyuk Lee;Eui Jin Hwang;Chang Min Park
    • Korean Journal of Radiology
    • /
    • v.24 no.2
    • /
    • pp.155-165
    • /
    • 2023
  • Objective: Little is known about the effects of using different expert-determined reference standards when evaluating the performance of deep learning-based automatic detection (DLAD) models and their added value to radiologists. We assessed the concordance of expert-determined standards with a clinical gold standard (herein, pathological confirmation) and the effects of different expert-determined reference standards on the estimates of radiologists' diagnostic performance to detect malignant pulmonary nodules on chest radiographs with and without the assistance of a DLAD model. Materials and Methods: This study included chest radiographs from 50 patients with pathologically proven lung cancer and 50 controls. Five expert-determined standards were constructed using the interpretations of 10 experts: individual judgment by the most experienced expert, majority vote, consensus judgments of two and three experts, and a latent class analysis (LCA) model. In separate reader tests, additional 10 radiologists independently interpreted the radiographs and then assisted with the DLAD model. Their diagnostic performance was estimated using the clinical gold standard and various expert-determined standards as the reference standard, and the results were compared using the t test with Bonferroni correction. Results: The LCA model (sensitivity, 72.6%; specificity, 100%) was most similar to the clinical gold standard. When expert-determined standards were used, the sensitivities of radiologists and DLAD model alone were overestimated, and their specificities were underestimated (all p-values < 0.05). DLAD assistance diminished the overestimation of sensitivity but exaggerated the underestimation of specificity (all p-values < 0.001). The DLAD model improved sensitivity and specificity to a greater extent when using the clinical gold standard than when using the expert-determined standards (all p-values < 0.001), except for sensitivity with the LCA model (p = 0.094). Conclusion: The LCA model was most similar to the clinical gold standard for malignant pulmonary nodule detection on chest radiographs. Expert-determined standards caused bias in measuring the diagnostic performance of the artificial intelligence model.