• Title/Summary/Keyword: experiments and practices

Search Result 271, Processing Time 0.025 seconds

Cost-based design of residential steel roof systems: A case study

  • Rajan, S.D.;Mobasher, B.;Chen, S.Y.;Young, C.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.2
    • /
    • pp.165-180
    • /
    • 1999
  • The cost effectiveness of using steel roof systems for residential buildings is becoming increasingly apparent with the decrease in manufacturing cost of steel components, reliability and efficiency in construction practices, and the economic and environmental concerns. While steel has been one of the primary materials for structural systems, it is only recently that its use for residential buildings is being explored. A comprehensive system for the design of residential steel roof truss systems is presented. In the first stage of the research the design curves obtained from the AISI-LRFD code for the manufactured cross-sections were verified experimentally. Components of the truss systems were tested in order to determine their member properties when subjected to axial force and bending moments. In addition, the experiments were simulated using finite element analysis to provide an additional source of verification. The second stage of the research involved the development of an integrated design approach that would automatically design a lowest cost roof truss given minimal input. A modified genetic algorithm was used to handle sizing, shape and topology variables in the design problem. The developed methodology was implemented in a software system for the purpose of designing the lowest cost truss that would meet the AISI code provisions and construction requirements given the input parameters. The third stage of the research involved full-scale testing of a typical residential steel roof designed using the developed software system. The full scale testing established the factor of safety while validating the analysis and design procedures. Evaluation of the test results indicates that designs using the present approach provide a structure with enough reserve strength to perform as predicted and are very economical.

Building Detection by Convolutional Neural Network with Infrared Image, LiDAR Data and Characteristic Information Fusion (적외선 영상, 라이다 데이터 및 특성정보 융합 기반의 합성곱 인공신경망을 이용한 건물탐지)

  • Cho, Eun Ji;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.635-644
    • /
    • 2020
  • Object recognition, detection and instance segmentation based on DL (Deep Learning) have being used in various practices, and mainly optical images are used as training data for DL models. The major objective of this paper is object segmentation and building detection by utilizing multimodal datasets as well as optical images for training Detectron2 model that is one of the improved R-CNN (Region-based Convolutional Neural Network). For the implementation, infrared aerial images, LiDAR data, and edges from the images, and Haralick features, that are representing statistical texture information, from LiDAR (Light Detection And Ranging) data were generated. The performance of the DL models depends on not only on the amount and characteristics of the training data, but also on the fusion method especially for the multimodal data. The results of segmenting objects and detecting buildings by applying hybrid fusion - which is a mixed method of early fusion and late fusion - results in a 32.65% improvement in building detection rate compared to training by optical image only. The experiments demonstrated complementary effect of the training multimodal data having unique characteristics and fusion strategy.

An Efficient Multidimensional Scaling Method based on CUDA and Divide-and-Conquer (CUDA 및 분할-정복 기반의 효율적인 다차원 척도법)

  • Park, Sung-In;Hwang, Kyu-Baek
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.4
    • /
    • pp.427-431
    • /
    • 2010
  • Multidimensional scaling (MDS) is a widely used method for dimensionality reduction, of which purpose is to represent high-dimensional data in a low-dimensional space while preserving distances among objects as much as possible. MDS has mainly been applied to data visualization and feature selection. Among various MDS methods, the classical MDS is not readily applicable to data which has large numbers of objects, on normal desktop computers due to its computational complexity. More precisely, it needs to solve eigenpair problems on dissimilarity matrices based on Euclidean distance. Thus, running time and required memory of the classical MDS highly increase as n (the number of objects) grows up, restricting its use in large-scale domains. In this paper, we propose an efficient approximation algorithm for the classical MDS based on divide-and-conquer and CUDA. Through a set of experiments, we show that our approach is highly efficient and effective for analysis and visualization of data consisting of several thousands of objects.

Surface Cover Application for Reduction of Runoff and Sediment Discharge from Sloping Fields (경사지 밭에서 발생하는 토양유실 저감을 위한 피복재 적용)

  • Shin, Min-Hwan;Won, Chul-Hee;Park, Woon-Ji;Choi, Young-Hun;Shin, Jae-Young;Lim, Kyoung-Jae;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.129-136
    • /
    • 2011
  • To measure effects of surface cover on runoff and sediment discharge reduction using rainfall simulator, four(5 m${\times}$30 m scale) plot experiments were conducted in this study. Surface covers made with straw mat, Polyacrylamide (PAM), chaff, and sawdust were simulated 4 times under 31.1~44.4 mm/hr rainfall intensities. Compared with results from control plot, the time of runoff generation is delayed and outflow volume decreased with surface cover. Effects on runoff reduction of straw mat, PAM, sawdust and chaff ranged 4.7~81.5 % and runoff rate reduced by 6.5~76.1 % respectively, when compared with those from control plot. The percentage of decrease in sediment discharge were 99.7~99.8 % from straw mat+sawdust+PAM plots, 85.9~95.6 % from straw mat+PAM plots, and 98.5~99.4 % from straw mat+chaff+PAM plots. The runoff, sediment discharge, and SS concentration reduction efficiencies of the cover materials were outstanding when compared to control plot. It was analyzed that reduction of runoff and sediment discharge were mainly contributed by decrease in rainfall energy impact and flow velocity and increase of infiltration due to the surface cover materials. The results could be used as a base for the development of best management practices (BMPs) to reduce runoff, sediment discharge from sloping field.

Rocking behavior of bridge piers with spread footings under cyclic loading and earthquake excitation

  • Hung, Hsiao-Hui;Liu, Kuang-Yen;Chang, Kuo-Chun
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.1001-1024
    • /
    • 2014
  • The size of spread footings was found to be unnecessarily large from some actual engineering practices constructed in Taiwan, due to the strict design provisions related to footing uplift. According to the earlier design code in Taiwan, the footing uplift involving separation of footing from subsoil was permitted to be only up to one-half of the foundation base area, as the applied moment reaches the value of plastic moment capacity of the column. The reason for this provision was that rocking of spread footings was not a favorable mechanism. However, recent research has indicated that rocking itself may not be detrimental to seismic performance and, in fact, may act as a form of seismic isolation mechanism. In order to clarify the effects of the relative strength between column and foundation on the rocking behavior of a column, six circular reinforced concrete (RC) columns were designed and constructed and a series of rocking experiments were performed. During the tests, columns rested on a rubber pad to allow rocking to take place. Experimental variables included the dimensions of the footings, the strength and ductility capacity of the columns and the intensity of the applied earthquake. Experimental data for the six circular RC columns subjected to quasi-static and pseudo-dynamic loading are presented. Results of each cyclic loading test are compared against the benchmark test with fixed-base conditions. By comparing the experimental responses of the specimens with different design details, a key parameter of rocking behavior related to footing size and column strength is identified. For a properly designed column with the parameter higher than 1, the beneficial effects of rocking in reducing ductility and the strength demand of columns is verified.

Development of User Interface and Blog based on Probabilistic Model for Life Log Sharing and Management (라이프 로그 공유 및 관리를 위한 확률모델 기반 사용자 인터폐이스 및 블로그 개발)

  • Lee, Jin-Hyung;Noh, Hyun-Yong;Oh, Se-Won;Hwang, Keum-Sung;Cho, Sung-Bae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.5
    • /
    • pp.380-384
    • /
    • 2009
  • The log data collected on a mobile device contain diverse and continuous information about the user. From the log data, the location, pictures, running functions and services of the user can be obtained. It has interested in the research inferring the contexts and understanding the everyday-life of mobile users. In this paper, we have studied the methods for real-time collection of log data from mobile devices, analysis of the data, map based visualization and effective management of the personal everyday-life information. We have developed an application for sharing the contexts. The proposed application infers the personal contexts with Bayesian network probabilistic model. In the experiments, we confirm that the usability of visualization and information sharing functions based on the real world log data.

Evaluation of NPS Pollutant Reduction of Rice Straw Mats in Field (경작지에서 볏짚거적의 비점오염물질 저감 평가)

  • Won, Chul-Hee;Shin, Min-Hwan;Choi, Yong-Hun;Lim, Kyoung-Jay;Han, Young-Han;Kwon, Jay-Hyouk;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.4
    • /
    • pp.37-44
    • /
    • 2013
  • We have examined the effect of rice straw mat (RSM) on the reduction of non-point source (NPS) pollution loads at soybean cultivations. The slope of the experimental plot was about 3 %. Monitoring was carried out for four years at conventional tillage (CT) in 2008~2009 years and RSM covered tillage in 2010~2011 years. Thirty-two rainfall events were monitored and analyzed during the study period. During the 2 years of 2008 and 2009, 20 rainfall runoff events were monitored. But in 2010 years, only 2 rainfall runoff events could be monitored. And in 2011 years, 10 rainfall runoff events was monitored. It was because the RSM cover enhanced infiltration and reduce runoff in 2010 and 2011. Average NPS pollution load (organic matters) of the RSM covered field was reduced by 72.1~94.2 % compared to that of CT field. NPS pollution load of TN and TP reduced by 67.5 % and 55.7 %, respectively. Especially, SS pollution load was reduced by 97.3 %. Based on the results, rice straw mat cover was considered as a promising best management practices (BMP) to reduce NPS pollution load. However, it was recommended that the results are limited to the field conditions and the same experiments must be performed on different soil textures, slopes, and crops if it is applied to the development of policies.

Characteristics of CFRP strengthened tubular joints subjected to different monotonic loadings

  • Prashob, P.S.;Shashikala, A.P.;Somasundaran, T.P.
    • Steel and Composite Structures
    • /
    • v.32 no.3
    • /
    • pp.361-372
    • /
    • 2019
  • Tubular joints are used in the construction of offshore structures and other land-based structures because of its ease of fabrication. These joints are subjected to different environmental loadings in their lifetime. At the time of fabrication or modification of an existing offshore platform, tubular joints are usually strengthened to withstand the environmental loads. Currently, various strengthening techniques such as ring stiffeners, gusset plates are employed to strengthen new and existing tubular joints. Due to some limitations with the present practices, some new techniques need to be addressed. Many researchers used Fibre Reinforced Polymer (FRP) to strengthen tubular joints. Some of the studies were focused on axial compression of Glass Fibre Reinforced Polymer (GFRP) strengthened tubular joints and found that it was an efficient technique. Earlier, the authors had performed studies on Carbon Fibre Reinforced Polymer (CFRP) strengthened tubular joint subjected to axial compression. The study steered to the conclusion that FRP composites is an alternative strengthening technique for tubular joints. In this work, the study was focused on axial compression of Y-joint and in plane and out of plane bending of T-joints. Experimental investigations were performed on these joints, fabricated from ASTM A106 Gr. B steel. Two sets of joints were fabricated for testing, one is a reference joint and the other is a joint strengthened with CFRP. After performing the set of experiments, test results were then compared with the numerical solution in ANSYS Parametric Design Language (APDL). It was observed that the joints strengthened with CFRP were having improved strength, lesser surface displacement and ovalization when compared to the reference joint.

Development of Wireless Communication Educational Equipment for Internet of Things (IoT) (사물인터넷(IoT)을 위한 무선통신 교육장비 개발)

  • Kim, Han-jong
    • Journal of Practical Engineering Education
    • /
    • v.13 no.2
    • /
    • pp.321-326
    • /
    • 2021
  • Wireless communication is a core technology constituting the Internet of Things (IoT), but there is no suitable educational equipment to learn various wireless communication technologies used in the Internet of Things through practice. This paper deals with the development of advanced education and training equipment that can perform various IoT wireless communication practices. It uses an Arduino mega board as a device to control various sensors. As wireless network technologies to send and receive the sensing date wirelessly, it makes use of RFID/NFC and Bluetooth among WPAN technologies, WiFi among WLAN technologies and LoRa and 2.4GHz wireless transceiver among WWAN technologies. In addition, GPS, infrared communication, I2C communication, and SPI communication are organized so that various IoT wireless communication technologies can be learned through practice. In addition, since the educational equipment developed in this paper is equipped with two devices, it is designed to perform transmission and reception experiments for wireless network technology within the equipment.

Development of an Easy-assemble Arduino Car Kit for Practice (쉽게 조립 가능한 실습용 아두이노 자동차 키트 개발 사례)

  • Lee, Eun-Sang
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.2
    • /
    • pp.31-37
    • /
    • 2022
  • The objective of this study was to present an example of the development of an Arduino car kit for practice. First, problems in the existing Arduino car kit were analyzed and various prototypes were developed that reflected the improvement plan. The developed kit was applied to the education field to identify problems and improvements, following which it was corrected and supplemented for use as an Arduino car kit for final practice. The Arduino car kit can be used for various experiments and practices related to an Arduino car by using a combination of two car bodies consisting of an upper plate and a lower plate. When a method to couple the upper and lower plates was used, the car body could be easily and quickly configured without the need for bolts or nuts. The developed kit involves a simple and easy assembly method, and hence, the time required for assembling a car body is considerably short. Accordingly, it is expected to be widely used as a kit that can directly experience programming education using a car.