• Title/Summary/Keyword: experimental warming

Search Result 186, Processing Time 0.019 seconds

An Experimental Study of the Fuel Additive to Improve the Performance of a 2-Stroke Large Diesel Engine (2행정 대형 디젤엔진의 성능향상을 위한 연료첨가제의 실험적 연구)

  • Ryu, Younghyun;Lee, Youngseo;Nam, Jeonggil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.620-625
    • /
    • 2015
  • In an effort to reduce the onset of global warming, the International Maritime Organization Marine Environment Protection Committee (IMO MEPC) proposed the reduction in ship speeds as a way of lowering the proportion of carbon dioxide ($CO_2$) in the Green House Gas emissions from ships. To minimize fuel costs, shipping companies have already been performing slow steaming for their own fleets. Specifically, the slow steaming approach has been adopted for most ocean-going container lines. In addition, because of the increased marine fuel cost that is required to enable increased capacity, there is an urgent need for more advanced fuel-saving technologies. Therefore, in this present study, we propose a fuel-cost reduction method that can improve the performance of diesel engines. We introduce a predetermined amount (0.025% of the amount of fuel used) of fuel additive (oil-soluble calcium-based organometallic compound). For improved experimental accuracy, as the test subjects, we utilize a large two-stroke diesel engine installed in land plants. The loads of the test engine were classified as low, medium, and high (50, 75, and 100%, respectively). We compare the engine performance parameters (power output, fuel consumption rate, p-max, and exhaust temperature) before and after the addition of fuel additives. Our experimental results, confirmed that we can realize fuel-cost savings of at least 2% by adding the fuel additive in low load conditions (50%). Likewise, the maximum combustion pressure was found to have increased. On the other hand, we observed that there was a reduction in the exhaust temperature.

The Effect of Natural Disaster Safety Education on Young Children's Safety Problem-solving Abilities and Eco-friendly Attitudes (자연재해 안전교육이 유아의 안전문제해결사고 및 환경 친화적 태도에 미치는 영향)

  • Lim, Eun Ok;Kim, Ji Eun
    • Korean Journal of Child Education & Care
    • /
    • v.18 no.4
    • /
    • pp.227-245
    • /
    • 2018
  • Objective: In this study, educational activities were organized to emphasize the importance of natural disaster safety education by reflecting the recent rapid increases in natural disasters. The study focused on story-sharing, art, and game activities to effectively conduct natural disaster safety education for four-year-old children, and in doing so, aimed to improve the children's safety problem-solving abilities and eco-friendly attitude. Methods: Based on the types of natural disasters that are handled by the Ministry of Public Administration and Security and the Chungcheongbuk-do Office of Education, earthquakes, yellow dust, heat waves, floods, typhoons, bolts of lighting, fires, snowstorms, and global warming were included as the study's educational contents, and a total 20 sessions of natural disaster safety education activities were planned. For the subjects, 20 four-year-old children at K Kindergarten attached to a school were selected as an experimental group and 20 four-year-old children at N Kindergarten attached to a school were selected as a control group. Both kindergartens were located in C City, Chungcheongbuk-do. The experimental group was instructed to perform the study's education activities, whereas the control group only carried out general activities based on the Nuri Curriculum's subjects of daily life. Results: As a result, the children in the experimental group, who received the natural disaster safety education, improved their safety problem-solving abilities and eco-friendly attitude when compared to those in the control group. This outcome proved that the natural disaster safety education conducted by the present study offers educational activities that can positively affect improvements in children's safety problem-solving abilities and eco-friendly attitude. Conclusion/Implications: Therefore, the present study is likely to provide concrete information to teachers who plan to conduct natural disaster safety education in the actual early childhood education field.

Effects of the Characteristics of Exhaust Emissions by Using Bio Fuel in Marine Diesel Engine (선박디젤기관에 있어서 바이오연료가 배기배출물특성에 미치는 영향)

  • Cho, Sang-Gon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.1
    • /
    • pp.103-108
    • /
    • 2015
  • Recent global warming has been recognized as the world economy development from fossil fuel use is the culprit. This study was reduce the fossil fuel has been developed in a number of alternative energy, As a fuel that can be produced in our country is a biofuel. Biofuels is a sustainable fuel having economically benefits and decreasing environmental pollution problems caused due to fossil fuel. A lot of research is progressing about the conversion of diesel biofuel as renewable clean energy. In this experiment were remodel the institution that has been used in fishing engine again produced an experimental apparatus were installed directly, were studied using various bio fuel like to help the economically and environmentally sound operation of the vessel. rapeseed oil, soybean oil, comprehensively analyzing the results the effects of the exhaust emission characteristics of the waste rapeseed oil is available in a marine engine with similar physical and chemical components of the fuel, and the fuel consumption ratio, NOx is slightly increased, but soot was confirmed a tendency to decrease much.

Active Force Control of Electro-Hydraulic Hybrid Load Simulator using Quantitative Feedback Theory (QFT를 이용한 전기유압 하이브리드 부하 시뮬레이터의 능동 힘제어)

  • Yoon, Joo-Hyeon;Ahn, Kyoung-Kwan;Truong, Dinh Quang;Jo, Woo-Geun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.2
    • /
    • pp.45-53
    • /
    • 2009
  • Today, reduction of $CO_2$ exhaustion gas for global-warming prevention becomes important issues in all industrial fields. Hydraulic systems have been widely used in industrial applications due to high power density and so on. However hydraulic pump is always being operated by engine or electric motor in the conventional hydraulic system. Therefore most of the conventional hydraulic system is not efficient system. Recently, an electro-hydraulic hybrid system, which combines electric and hydraulic technology in a compact unit, can be adapted to a wide variety of force, speed and torque requirements. In the electro-hydraulic hybrid system, hydraulic pump is operated by electric motor only when hydraulic power is needed. Therefore the electro-hydraulic system can reduce the energy consumption drastically when compared to the conventional hydraulic systems. This paper presents a new kind of hydraulic load simulator which is composed of electro-hydraulic hybrid system. Disturbances in the real working condition make the control performance decrease or go bad. QFT controller is designed to eliminate or reduce the disturbance and improve the control performance of the electro-hydraulic load simulator. Experimental results show that the proposed controller is verified to apply for electro-hydraulic hybrid system with varied external disturbances.

A Study on the Proper Position of Guide Sign for Bikeway in Korea (자전거 도로의 안내표지 설치 위치에 관한 연구)

  • Jeong, Gyu-Su;Lee, Yeong-In
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.6
    • /
    • pp.99-108
    • /
    • 2010
  • Due to the recent emergence of global warming concerns, the UN has made the issue of climate change its top priority. Accordingly, Korea has announced a new national master plan titled, 'Participation in global efforts in climate change through -Low Carbon, Green Growth-'. As part of the plan, the constructions of bicycle path networks are being pushed forward. Although the building of bicycle paths and infrastructure is being implemented, little consideration has been given for bicycle path signage. This essay is the study of methodology in the installation of signs on bicycle paths. The research includes a theoretical study of the standard and installation position of signs with consideration of the geometry of bicycles as well issues such as the distance required for the bicyclist to recognize and understand the road sign and to take actions like stopping, In addition, experimental verification of the test results has been carried out. Also, the test on height of signs by changing the installation heights according to a bicyclist's forward vision angle has been conducted.

AC Breakdown Voltage Simulation of SF6/N2 Mixture in Non-Uniform Field and Its Comparison with Experimental Values (불평등 전계에서 SF6/N2 혼합가스의 AC 절연파괴전압 시뮬레이션 및 실험값와의 비교)

  • Lee, Byung-Taek;Hwang, Cheong-Ho;Lee, Tae-Ho;Huh, Chang-Su;Chang, Yong-Moo;Lee, Ki-Taek
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.8
    • /
    • pp.1416-1422
    • /
    • 2010
  • $SF_6$ is the most commonly used insulating gas in electrical systems. But In these days $SF_6$ mixtures and alternative gas has been studied because of global warming. so although many studies have been carried out about binary gas mixtures with $SF_6$, few studies were presented about breakdown characteristics of $SF_6/N_2$ mixtures. At present study the breakdown characteristics of $SF_6/N_2$ mixtures in Non-uniform field was performed. In this paper, The simulation value are compared with experiment values. Streamer breakdown criterion was used for predicting breakdown voltage. For accurate simulation this simulation apply utilization factor using CST(computer simulation technology) EM $studio^{tm}$ program. AC breakdown experiments in non-uniform field was performed to compare with the breakdown simulation values. The pressure range of gas mixtures was 0.4 MPa to 0.7 MPa. The rod-plane was used and mixture ratio is $SF_6$ 20% : $N_2$ 80%. The gap lengths are 10mm to 70mm. As the pressure increase, this simulation value does not correspond to the experiment value. So this simulation need surface roughness factor. As a result of applying surface roughness factor this simulation decrease a relative error (|experiment value - simulation value| /simulation value).

Surface Flux Measurements of Methane from Lamdfills by Closed Chamber Technique and its Validation (플럭스챔버에 의한 매립지표면 메탄의 배출량 측정과 분석)

  • 김득수;장영기;전의찬
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.5
    • /
    • pp.499-509
    • /
    • 2000
  • Next to carbon dioxide, methane is the second largest contributor to global warming among anthropogenic greenhouse gases. Methane is emitted into the atmosphere from both natural and anthropogenic sources. Natural sources include wetlands, termites, wildries, ocean and freshwater. Anthropogenic sources include landfill, natural gas and oil production, and agriculture. These manmade sources account for about 70% of total global methane emissions; and among these, landfill accounts for approximately 10% of total manmade emissions. Solid waste landfills produce methane as bacteria decompose organic wastes under anaerobic conditions. Methane accounts for approximately 45 to 50 percent of landfill gas, while carbon dioxide and small quantities of other gases comprise the remaining to 50 to 55 percent. Using the closed enclosure technique, surface emission fluxes of methane from the selected landfill sites were measured. These data were used to estimate national methane emission rate from domestic landfills. During the three different periods, flux experiments were conducted at the sites from June 30 through December 26, 1999. The chamber technique employed for these experiments was validated in situ. Samples were collected directly by on-site flux chamber and analyzed for the variation of methane concentration by gas chromatography equipped with FID. Surface emission rates of methane were found out to vary with space and time. Significant seasonal variation was observed during the experimental period. Methane emission rates were estimated to be 64.5$\pm$54.5mgCH$_4$/$m^2$/hr from Kimpo landifll site. 357.4$\pm$68.9mgCH$_4$/$m^2$/hr and 8.1$\pm$12.4mgCH$_4$/$m^2$/hr at KwanJu(managed and unmanaged), 472.7$\pm$1056mgCH$_4$/$m^2$/hr at JonJu, and 482.4$\pm$1140 mgCH$_4$/$m^2$/hr at KunSan. These measurement data were used for the extrapolation of national methane emission rate based on 1997 national solid waste data. The results were compared to those derived by theoretical first decay model suggested by IPCC guidelines.

  • PDF

Experimental Study on Heating Performance Characteristic of 100 kW Heat Pump to Generate ℃ Steam (120℃ 스팀 생성을 위한 100 kW급 히트펌프의 실험적 연구)

  • Wang, Eunseok;Na, Sun-Ik;Lee, Gilbong;Baik, Young-Jin;Lee, Young-Soo;Lee, Beomjoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.2
    • /
    • pp.100-106
    • /
    • 2018
  • Recently, the development of a heat pump technology to recover process waste heat and to generate steam of $120^{\circ}C$ or higher required for industrial processes, has attracted attention. The research of conventional heat pump utilizing the available energy is used primarily for air conditioning, and the production temperature is about $60^{\circ}C$, so it is difficult to utilize it for industrial use. Therefore, in this study, we developed a steam heat pump (SGHP) which recovers the waste heat of process and generates steam at $120^{\circ}C$. The low-pressure refrigerant R245fa, considered to be an eco-friendly refrigerant, has been selected as the refrigerant for SGHP in this study since its Ozone Depletion Potential (ODP) is zero and the Global Warming Potential (GWP) is relatively low. A flash tank functioning as a phase separator was installed in the rear stage of the condenser, and the saturated water of high temperature was decompressed to generate steam. It was started at the initial temperature of $70^{\circ}C$, and it was confirmed that $120^{\circ}C$ steam was produced after the system stabilized. We have conducted experiments by modifying the system, and ultimately achieved a heating capacity of 101.4 kW and a COP of 3.05.

Evaluations of Hydrogen Embrittlement Behaviours on Dissimilar Welding Part of SDS Bottles (II) (삼중수소 저장용기 이종용접부의 수소취화 거동 평가 (II))

  • Cho, Kyoungwon;Choi, Jaeha;Jang, Minhyuk;Lee, Youngsang;Hong, Taewhan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.2
    • /
    • pp.120-126
    • /
    • 2015
  • Recently, the ever-increasing use of fossil fuels for rapid industrial development and population significantly caused an environment pollution and global warming such as climate change. So research and development of sustainable and eco-friendly energy have been performed. Especially the interest in nuclear fusion fuel was significantly increased from the developed countries. The system of fusion energy production was tritium separation, storage and delivery, and purification. Republic of Korea is in charge of Storage and Delivery System (SDS) in the International Thermonuclear Experimental Reactor (ITER). Welding part of the SDS bottles for storing the tritium is known to be susceptible to hydrogen embrittlement. In this study, conducted a study for the relaxation of the stability and hydrogen embrittlement of the weld area. The hydrogen heat treatment was processed through the Pressure-Composition-Temperature (PCT) device according to the time variation. Also mechanical properties such as impact test and hardness test according to using the alkaline cleaning liquid for hydrogen embrittlement relief and the fracture was observed by scanning electron microscopy (SEM) after the mechanical properties evaluation.

Evaluations of Hydrogen Embrittlement Behaviours on Dissimilar Welding Part of SDS Bottles (I) (삼중수소 저장용기 이종용접부의 수소취화 거동 평가 (I))

  • Cho, Kyoungwon;Choi, Jaeha;Jang, Minhyuk;Lee, Youngsang;Hong, Taewhan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.2
    • /
    • pp.114-119
    • /
    • 2015
  • Nowdays, fossil fuels have been used as an important resource in development of industry. But it is limited and caused climate change such as pollution and global warming. So nuclear fusion research is being issued with tritium to develop eco-friendly and sustainable energy. Republic of Korea is in charge of Storage and Delivery System (SDS) in the International Thermonuclear Experimental Reactor (ITER), weld present in the SDS bottles are easily exposed to the hydrogen embrittlement of special characteristics of the hydrogen in hydrogen atmosphere, When the hydrogen embrittlement is rapidly progresses, the cracking is generated in the weld zone. Due to this cracking, the risk of leakage of tritium into the atmosphere occurs. In this study, hydrogen heat treatment was processed through the Pressure-Composition-Temperature (PCT) device according to the time variation. Also mechanical properties such as rupture strength test, three point bend test and hardness test in accordance with the respective time have been conducted and the fracture was observed by scanning electron microscopy(SEM) after the mechanical properties evaluation.