• Title/Summary/Keyword: experimental techniques

Search Result 3,189, Processing Time 0.031 seconds

CT HEAD IMAGES SEGMENTATION USING UNSUPERVISED TECHNIQUES

  • Lee, Tong Hau;Fauzi, Mohammad Faizal Ahmad;Komiya, Ryoichi;Hu, Ng
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.217-222
    • /
    • 2009
  • In this paper, a new approach is proposed for the segmentation of Computed Tomography (CT) head images. The approach consists of two-stage segmentation with each stage contains two different segmentation techniques. The ultimate aim is to segment the CT head images into three classes which are abnormalities, cerebrospinal fluid (CSF) and brain matter. For the first stage segmentation, k-means and fuzzy c-means (FCM) segmentation are implemented in order to acquire the abnormalities. Whereas for the second stage segmentation, modified FCM with population-diameter independent (PDI) and expectation-maximization (EM) segmentation are adopted to obtain the CSF and brain matter. The experimental results have demonstrated that the proposed system is feasible and achieve satisfactory results.

  • PDF

Rejuvenation Technologies for Hot Gas Path Components made of Nickel Based Superalloys (니켈기 초합금 소재 고온부 부품의 재생정비기술)

  • Kang, Sin-Ho;Choi, Heui-Sook;Kim, Dae-Eun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.424-429
    • /
    • 2003
  • Hot gas path components, which are made of nickel based superalloys, are subject to periodic replacement due to degradation of thermomechanical properties that might bring catastrophic failure during normal operation of gas turbine units. In order to rejuvenate the metallurgical condition of the serviced components, heat treating techniques such as solution annealing and aging heat treatments have widely been employed. However, the effectiveness of those typical heat treatments is not apparent enough in terms of quantitative grounds. On the other hand the demand of the rejuvenation heat treatment and hot isostatic pressing (HIP) have constantly been raised by the end users. Therefore it is necessary to verify how the typical heat treating techniques affect to the aged and degraded material. As the result of experimental work in this study, GTD-111 and GTD-222 Ni-based superalloys were collected and analyzed quantitatively through microscopic observation, microhardness evaluation and creep test.

  • PDF

Comparative Study of Maximum Power Point Tracking Algorithms Using PV Array Simulator (태양전지 모의 전원을 이용한 MPPT 알고리즘의 비교 고찰)

  • Jung Youngseok;So Junghun;Yu Gwonjong;Choi Jaeho
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.234-237
    • /
    • 2003
  • As the maximum power operating point (MPOP) of photovoltaic (PV) power systems changes with changing atmospheric conditions, the efficiency of maximum power point tracking (MPPT) is important in PV power systems. Many MPPT techniques have been considered in the past, but techniques using microprocessors with appropriate MPPT algorithms are favored because of their flexibility and compatibility with different PV arrays. Although the efficiency of these MPPT algorithms is usually high, it drops noticeably in case of rapidly changing atmospheric conditions. In this paper, we proposed a new MPPT control method called improved perturb and observe method (ImP&O), anda simple voltage and current characteristic equation of a PV array for PV array simulator. Experimental results verify the accuracy and excellent performance of the proposed MPPT method. ImP&O algorithm is very simple, and has successful tracked the MPOP, even in case of rapidly changing atmospheric conditions.

  • PDF

A new approach for the saccadic eye movement system simulation (Saccade 안구운동계의 시뮬레이션)

  • 박상희;남문현
    • 전기의세계
    • /
    • v.26 no.1
    • /
    • pp.87-90
    • /
    • 1977
  • Various simulation techniques were developed in the modeling of biological system during the last decades. Mostly analog and hybrid simulation techniques have been used. The authors chose the Digital Analog Simulation (DAS) technique by using the MIMIC language to simulate the saccadic eye movement system performances on the digital computer. There have been various models presented by many investigators after Young & Stark's sampled-data model. The eye movement model chosen by the authors is Robinson's model III which shows the parallel information processing characteristics clearly to the double-step input stimuli. In the process of simulation, the parameter and constants used were based on the neurophysiological data of the human and animals. The analog model blocks were converted to the corresponding MIMIC block diagrams and programmed into the MIMIC statements. The program was run on the CDC Cyber 72-14 computer. The essential input stimulus was double-step of 5 and 10 degrees, and target durations chosen were 50,100 and 150 msec. The results obtained by the DAS technqiue were in good agreement with analog simulation carried out by other investigators as well as with the experimental human saccadic eye movement responses to double-step target movements.

  • PDF

A Low Frequency Band Watermarking with Weighted Correction in the Combined Cosine and Wavelet Transform Domain

  • Deb, Kaushik;Al-Seraj, Md. Sajib;Chong, Ui-Pil
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.1
    • /
    • pp.13-20
    • /
    • 2013
  • A combined DWT and DCT based watermarking technique of low frequency watermarking with weighted correction is proposed. The DWT has excellent spatial localization, frequency spread and multi-resolution characteristics, which are similar to the theoretical models of the human visual system (HVS). The DCT based watermarking techniques offer compression while DWT based watermarking techniques offer scalability. These desirable properties are used in this combined watermarking technique. In the proposed method watermark bits are embedded in the low frequency band of each DCT block of selected DWT sub-band. The weighted correction is also used to improve the imperceptibility. The extracting procedure reverses the embedding operations without the reference of the original image. Compared with the similar approach by DCT based approach and DWT based approach, the experimental results show that the proposed algorithm apparently preserves superiori mage quality and robustness under various attacks such as JPEG compression, cropping, sharping, contrast adjustments and so on.

A reference to the original source of herb-acupuncture in methods (약물주입(藥物注入)의 기법적(技法的) 시원(始源)에 대한 소고(小考))

  • An, Sang-U
    • Journal of Pharmacopuncture
    • /
    • v.1 no.1
    • /
    • pp.87-102
    • /
    • 1997
  • YAKCHIM is a clinical research of korean O.M.D's in the 1960's, and it was activated by experimental research and organization of the association after 1980. YAKCHIM in Korea is a new technical therapy that used the efficacy of traditional herb and the stimulation of meridian at points by needles. In order to search the original form of YAKCHIM and the significance of development in therapeutic methodology, reger to various documents. The results were obtained as follow : 1. The form of injection in YAKCHIM is a developed form of a aspirator which trace the cupping therapy(附缸) to its origin. 2. The injection techniques that used extracts of oriental herb can be found out original methodology in Bee-acupuncture(蜂針) and snake teeth etc. that have been used in far-eastern area from long time ago. 3. YAKCHIM in Korea is a developed form of techniques which was combined with the meridian theory, in consequence, it is difference with an injection syringe which only used to injection in modern medicine.

Implementing a Branch-and-bound Algorithm for Transductive Support Vector Machines

  • Park, Chan-Kyoo
    • Management Science and Financial Engineering
    • /
    • v.16 no.1
    • /
    • pp.81-117
    • /
    • 2010
  • Semi-supervised learning incorporates unlabeled examples, whose labels are unknown, as well as labeled examples into learning process. Although transductive support vector machine (TSVM), one of semi-supervised learning models, was proposed about a decade ago, its application to large-scaled data has still been limited due to its high computational complexity. Our previous research addressed this limitation by introducing a branch-and-bound algorithm for finding an optimal solution to TSVM. In this paper, we propose three new techniques to enhance the performance of the branch-and-bound algorithm. The first one tightens min-cut bound, one of two bounding strategies. Another technique exploits a graph-based approximation to a support vector machine problem to avoid the most time-consuming step. The last one tries to fix the labels of unlabeled examples whose labels can be obviously predicted based on labeled examples. Experimental results are presented which demonstrate that the proposed techniques can reduce drastically the number of subproblems and eventually computational time.

Characterization of Chemical Sludge inside Pipes Using Torsional Guided Waves

  • Park, Kyung-Jo
    • Journal of Power System Engineering
    • /
    • v.18 no.3
    • /
    • pp.29-35
    • /
    • 2014
  • A new method is presented that uses guided wave techniques for sludge and blockage detection in long-range pipelines. Existing techniques have the limitations that the sludge position needs to be known a priori and the area to be inspected needs to be accessible. A novel guided wave technique has been developed that allow the sludge or blockages to be detected remotely without the need to access the specific location where the pipe is blocked, nor to open the pipe. The technique measures the reflection of guided waves by sludge that can be used to accurately locate the blocked region. The effectiveness of the proposed technique is demonstrated and confirmed by experimental measurements.

A Study on the Optimized Test Condition of Lock-in IR Thermography by Image Processing

  • Cho, Yong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.3
    • /
    • pp.276-283
    • /
    • 2012
  • In this study, it was studies the utilization of LIT(lock-in infrared thermography) which can detect defects in welded parts of ship and offshore structures. Quantitative analysis was used through methods of filtering and texture measurement of image processing techniques to find the optimized experimental condition. We verified reliability in our methods by applying image processing techniques in order to normalize evaluations of comparative images that show phase difference. In addition, low to mid exposure showed good results whereas high exposure did not provide significant results in regards to intensity of light exposure on surface. Lock-in frequency was satisfactory around 0.1 Hz regardless of intensity of light source we had. In addition, having the integration time of thermography camera inversely proportional to intensity of exposed light source during the experiment allowed good outcome of results.

Comparative Study of Linear and Nonlinear Ultrasonic Techniques for Evaluation Thermal Damage of Tube-Like Structures

  • Li, Weibin;Cho, Younho;Li, Xianqiang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • Ultrasonic guided wave techniques have been widely used for long range nondestructive detection in tube-like structures. The present paper investigates the ultrasonic linear and nonlinear parameters for evaluating the thermal damage in aluminum pipe. Specimens were subjected to thermal loading. Flexible polyvinylidene fluoride (PVDF) comb transducers were used to generate and receive the ultrasonic waves. The second harmonic wave generation technique was used to check the material nonlinearity change after different heat loadings. The conventional linear ultrasonic approach based on attenuation was also used to evaluate the thermal damages in specimens. The results show that the proposed experimental setup is viable to assess the thermal damage in an aluminum pipe. The ultrasonic nonlinear parameter is a promising candidate for the prediction of micro-damages in a tube-like structure.