• Title/Summary/Keyword: experimental helicopter system

Search Result 41, Processing Time 0.027 seconds

3-DOF Attitude Control of a Model Helicopter based on Explicit Decoupling and Adaptive Control Scheme

  • Park, M.S.;S.K. Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.85.6-85
    • /
    • 2001
  • This paper describes a 3-DOF attitude control of a small model helicopter in hover through explicit decoupling and adaptive control scheme. A model helicopter mounted on gimbal-stand is considered as a system that has 3 independent SISO systems representing motions about roll, pitch and yaw axis and these subsystems are identified from the test flight data. In this consideration, the contribution of others to yaw channel is neglected since it is relatively small. Two PID controllers based on Ziegler-Nichols method are designed for roll pitch channels independently. Also, adaptive fuzzy tuner is designed and applied to those PID controllers to cope with coupling effects between each channel and system uncertainties due to variation of engine RPM. The experimental results show that the attitude control ...

  • PDF

강인한 서보계설계와 R/C헬리콥터 트레이닝 시뮬레이터 제어에의 응용 (Design of robust servo systems and application to control of training simulator for radio-controlled helicopter)

  • 김상봉;박순실
    • 대한기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.497-506
    • /
    • 1991
  • In this paper, a new construction for training simulator of R/C helicopter based on two types of servo controller is proposed. Two modified algorithms (algorithm I and II) for servo controller design are presented. Algorithm I is developed by adopting Davison's method in the case that the expressions for the homogeneous differential equations of reference input and disturbance are different types, and algorithm II is done by considering error weighting function for the servo controller of algorithm I . The linear fractional transformation method is incorporated in both design methods in order to assign the closed loop poles of the servo system in a specified region. The helicopter simulator is composed by the gimbals with two freedom of rolling and pitching. The reliability and validity for the design methods of the proposed servo controller are investigated through the practical experiment for the simulator by using 16bits micro-computer with A/D and D/A converters. It can be observered from the experimental results that the proposed servo controller is applicable to practical plants since the simulator is robust for the arbitrary disturbance and it follows to the given reference input without significant steady state error.

Sliding Mode Trim and Attitude Control of a 2-00F Rigid-Rotor Helicopter Model

  • Jeong, Heon-Sul;Chang, Se-Myong;Park, Jin-Sung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제6권2호
    • /
    • pp.23-32
    • /
    • 2005
  • An experimental control system is proposed for the attitude control of a simplified 2-DOF helicopter model. The main rotor is a rigid one, and the fuselage is simply supported by a fixed hinge point where the longitudinal motion is decoupled from the lateral one since the translations and the rolling rotation are completely removed. The yaw trim of the helicopter is performed with a tail rotor, by which the azimuthal attitude can be adjusted on the rotatable post in the yaw direction. The robust sliding mode control tracking a given attitude angle is proposed based on the flight dynamics. A pitch damper is inserted for the control of pitching angle while the compensator to reaction torque is used for the control of azimuth angle. Several parameters of the system are selected through experiments. The results shows that the proposed control method effectively counteracts nonlinear perturbations such as main rotor disturbance, undesirable chattering, and high frequency dynamics.

Vibration Health Monitoring of Helicopter Transmission Systems at Westland Helicopter Ltd.

  • Kang, Chung-Shin;Choi, Sun-Woo;Ahn, Seok-Min;Horsey, M.W;Stuckey, M.J
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제1권1호
    • /
    • pp.48-61
    • /
    • 2000
  • Korea Aerospace Research Institute (KARI) have gained experience with Helicopter Vibration Health Monitoring (VHM) System technology with the help of UK GKN-WHL. GKN-WHL have had many years of experience with the research and development of vibration analysis techniques to improve the health monitoring of helicopter transmissions. This activity was targeted at transmission rig testing at first, but the techniques have been progressively developed where they are now used as a part of integrated Health and Usage Monitoring (HUM) systems on many types of in-service and new helicopters. The technique development process has been considerably aided by an ever expanding database of transmission monitoring experience from both the rig testing and aircraft operations. This experience covers a wide range of failure types from naturally occurring faults to crack propagation studies and covering a wide range of transmission configurations. Primarily based on accelerometer signals GKN-WHL's vibration analysis methods have also been applied to a variety of other sensor types. The transition from an experimental environment to operational VHM systems has been a lengthy process, there being a need to demonstrate technique reliability as well as effectiveness to both regulatory (Airworthiness Authority) and commercial organizations. Another important feature of this process has been the development of close relationships with a number of VHM system hardware and software suppliers. Such an experienced GKN-WHL provides various raw vibration data which was acquired from transmission ground test rig and allow KARI to develop it's own analysis program. KARI made a program and then analyzed the data to coma pre with the results of GKN-WHL. The KARI's results both time domain signals and statistical values show comparable to GKN's.

  • PDF

Inflow Prediction and First Principles Modeling of a Coaxial Rotor Unmanned Aerial Vehicle in Forward Flight

  • Harun-Or-Rashid, Mohammad;Song, Jun-Beom;Byun, Young-Seop;Kang, Beom-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권4호
    • /
    • pp.614-623
    • /
    • 2015
  • When the speed of a coaxial rotor helicopter in forward flight increases, the wake skew angle of the rotor increases and consequently the position of the vena contracta of the upper rotor with respect to the lower rotor changes. Considering ambient air and the effect of the upper rotor, this study proposes a nonuniform inflow model for the lower rotor of a coaxial rotor helicopter in forward flight. The total required power of the coaxial rotor system was compared against Dingeldein's experimental data, and the results of the proposed model were well matched. A plant model was also developed from first principles for flight simulation, unknown parameter estimation and control analysis. The coaxial rotor helicopter used for this study was manufactured for surveillance and reconnaissance and does not have any stabilizer bar. Therefore, a feedback controller was included during flight test and parameter estimation to overcome unstable situations. Predicted responses of parameter estimation and validation show good agreement with experimental data. Therefore, the methodology described in this paper can be used to develop numerical plant model, study non-uniform inflow model, conduct performance analysis and parameter estimation of coaxial rotor as well as other rotorcrafts in forward flight.

3-자유도 헬리콥터 시스템의 입자군집최적화 기법을 이용한 시스템 식별 (A Study on Identification using Particle Swarm Optimization for 3-DOF Helicopter System)

  • 이호운;김태우;김태형
    • 한국지능시스템학회논문지
    • /
    • 제25권2호
    • /
    • pp.105-110
    • /
    • 2015
  • 본 연구는 Quanser사의 3-자유도 헬리콥터 시스템에 대한 종래의 선형 수리 모델을 개선한 수리 모델을 제안하고, 실험을 통해 제안된 수리 모델을 기반으로 설계된 제어기의 제어 성능을 종래의 수리 모델을 기반으로 설계된 제어기의 제어 성능과 비교함으로써 그 타당성을 검증한다. 이에 대한 연구 진행 과정은 다음과 같다. 첫째, 3-자유도 헬리콥터 시스템의 동 특성을 분석하고, 종래의 선형 수리 모델을 구축한다. 둘째, 종래의 수리 모델의 구축을 위해 수행된 선형화 과정에서 제거된 비선형적 요소들을 파악한다. 그리고 이 제거된 비선형적 요소들에 대응하는 파라미터들을 추가하여 개선된 수리 모델을 구축한다. 이 때, 수리 모델을 구축하기 위해 메타 휴리스틱 전역 최적화 기법인 입자군집최적화 알고리즘을 이용한다. 마지막으로, 제안된 모델을 기반으로 제어기를 설계하고, 이를 종래의 수리 모델을 기반으로 설계된 제어기의 제어 성능을 비교하여 제안된 수리 모델의 타당성을 검증한다.

헬리콥터 강착장치 비선형 충돌해석 및 실험결과 비교 (Nonlinear Crash Analyses and Comparison with Experimental Data for the Skid Landing Gear of a Helicopter)

  • 이상민;김동현;정세운
    • 한국항공우주학회지
    • /
    • 제34권8호
    • /
    • pp.87-94
    • /
    • 2006
  • 본 연구에서는 헬리콥터 스키드형 강착장치에 대한 비선형 충돌해석을 수행하였으며, 실제 운용중인 헬리콥터(SB427)의 강착장치 시스템이 해석에 고려되었다. 재료의 소성 거동특성과 두께변화를 고려한 3차원 유한요소 모델을 구축하였으며, LS-DYNA(Ver.970)를 활용하여 다양한 충돌 조건에 대한 전산충돌해석을 수행하여 특성을 검토하였다. 지면충돌에 기인한 강착장치의 비선형 천이응답이 설계요구조건에 대해 검토되었다. 다양한 충돌조건에 대해 비선형 충돌해석으로 예측한 최대 구조 변형량을 실험결과와 정량적으로 비교하였으며, 마찰의 영향을 고려하는 것이 해석결과의 정확성에 매우 중요함을 보였다.

군용 헬리콥터 조종사 스케줄링 모형 (A Model of Military Helicopter Pilot Scheduling)

  • 김주안;이문걸
    • 산업경영시스템학회지
    • /
    • 제43권4호
    • /
    • pp.150-160
    • /
    • 2020
  • In this paper, we introduce a pilot's scheduling model which is able to maintain and balance their capabilities for each relevant skill level in military helicopter squadron. Flight scheduler has to consider many factors related pilot's flight information and spends a lot of times and efforts for flight planning without scientific process depending on his/her own capability and experience. This model reflected overall characteristics that include pilot's progression by basis monthly and cumulative flight hours, operational recent flight data and quickly find out a pinpoint areas of concern with respect to their mission subjects etc. There also include essential several constraints, such as personnel qualifications, and Army helicopter training policy's constraints such as regulations and guidelines. We presented binary Integer Programming (IP) mathematical formulation for optimization and demonstrated its effectiveness by comparisons of real schedule versus model's solution to several cases experimental scenarios and greedy random simulation model. The model made the schedule in less than 30 minutes, including the data preprocessing process, and the results of the allocation were more equal than the actual one. This makes it possible to reduce the workload of the scheduler and effectively manages the pilot's skills. We expect to set up and improve better flight planning and combat readiness in Korea Army aviation.

전자광학추적장비의 좌표추적기 구현 및 헬리콥터 탑재 레이더 연동시험에 관한 연구 (An Experimental Study on Coordinates Tracker Realization for EOTS Slaved to the Radar of a Helicopter)

  • 정슬;박주광
    • 제어로봇시스템학회논문지
    • /
    • 제11권4호
    • /
    • pp.369-377
    • /
    • 2005
  • This paper describes the realization of a coordinates tracking algorithm for an EOTS (Electro-Optical Tracking System). The EOTS stabilizes the image sensors, tracks targets automatically, and provides navigation capability for vehicles. The coordinates tracking algorithm calculates the azimuth and the elevation angle of an EOTS using the inertial navigation system and the attitude sensors of the vehicle, so that LOS designates the target coordinates which are generated by a Radar. In the error analysis, the unexpected behaviors of an EOTS due to the time delay and deadbeat of the digital signals of the vehicle equipments are anticipated and the countermeasures are suggested. The application of this algorithm to an EOTS will improve the operational capability by reducing the time which is required to find the target and support flight especially in the night time flight and the poor weather condition.

퍼지 동조 PID 제어기를 이용한 모형 헬리콥터의 개선된 3자유도 자세제어 (Improved 3-DOF Attitude Control of a Model Helicopter using Fuzzy-Tuning PID Controller)

  • 박문수;박덕기;정원재;김병두;홍석교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2470-2472
    • /
    • 2001
  • This paper describes the application of a fuzzy-tuning PID controller to a 3-DOF attitude control of a small model helicopter in hover for the compensation of coupling effects between each axis and system uncertainties due to the variation of engine RPM. A Low-level PID controller is designed by Ziegler-Nichols method and its gains are tuned by a high-level fuzzy system based on error states and its time derivatives. The experimental results show that the attitude control performance of fuzzy-tuning PID controller is improved comparing with that of a Ziegler-Nichols PID controller and fuzzy controller.

  • PDF